ISSN: 2320-2653

QUESTIONNAIRE EVALUATION WITH FACTOR ANALYSIS: ATTITUDE TOWARDS INCLUSIVE EDUCATION

ISSN: 2320-2653 UGC Approval No: 44213

Article Particulars

Vol. 6

Received: 22.02.2018

No. 2

Accepted: 07.03.2018

Published: 27.03.2018

K. JAGADEESH

Ph.D. Scholar, Department of Education University of Madras, Chennai, Tamil Nadu, India

March 2018

Dr. A. SUBRAMANIAN Assistant Professor, Department of Education University of Madras, Chennai, Tamil Nadu, India

Abstract

This paper focused on the Questionnaire Evaluation with Factor Analysis: Attitude towards Inclusive Education. Factor analysis is by far the most often used multivariate technique of research studies. Factor analysis, thus, seeks to resolve a large set of measured variables in terms of relatively few categories, known as factors. This technique allows the researcher to group variables into factors and the factors so derived may be treated as new variables and their value derived by summing the values of the original variables which have been grouped into the factor. The meaning and name of such new variables is subjectively determined by the researcher. Since the factors happen to be linear combinations of data, the coordinates of each observation or variable is measured to obtain what are called factor loading. Such factor loading represent the correlation between the particular variables and the factor, and are usually place in a matrix of correlations between the variable and the factor. The data were collected using survey method. Simple random sampling technique was used in this study. The number of respondent was 249 students both boys and girls studying in Chennai schools at High school level. After a pilot study item analysis is dine for each items, 41 statements were retained out of 50 statements. The tool on a five point rating scale like strongly Agree to strongly Disagree. The statistical technique used was factor analysis. The result showed five new dimensions or factors was successfully constructed using factor analysis.

Keywords: Factor Analysis, Inclusive Education, KMO and Bartlett's test, Total Variance Explained.

Introduction

Integration and inclusion is an important part of equal opportunity in Educator. Demands for integrated and inclusive classroom have increased and fostered major changes to schooling and education. The diversity of the 21st century classroom creates numerous challenges for teachers who may not have known the same diversity themselves as students. Students with special needs are educated along with their peers within the confined community therefore schools are required to adapt to accommodate adverse group of students with a variety of needs. Approaches to the inclusion into mainstream classroom and the identification and recognition of special education needs, is an integral part of school work. The learning potential of diverse students is just challenging the organization of learning settings in the school.

Definition of Attitude

According to Sorenson (1977) An attitude is a particular feeling about something. It therefore involves a tendency to behave in a certain way in situations which involve that something, whether person, idea or object. It is partially rational and partially emotional and is acquired, not inherent in an individual.

Inclusive Education

Inclusive Education means that all students like students with special needs and general education students attend and are welcomed by their neighborhood schools in age – appropriate, regular classes and are supported to learn, contribute and participate in all aspects of the life of the school.

Tool Construction and Validation

Attitude towards Inclusive Education tool was constructed and validated by the researcher. The researcher constructs the statements after referring some available materials of Attitude towards Inclusive Education related journals, books and theses; acceptance or rejection of each one would imply a different degree of favorable or unfavorable related to tool. The statements were than screened and edited in accordance with guidelines suggested by Likerts and others.

Final Tool

After a pilot study Item analysis is done for each item 41 statements were retained out of 50 for the Attitude towards Inclusive Education scale based on Item total correlation value. The tool on a five point rating scale such as SA- Strongly Agree, A-Agree, NI- No Idea, DA- Disagree, and SDA- Strongly Disagree.

The reliability of Attitude towards Inclusive Education tool was worked out by using Cronbach's Alpha and split half method. The reliability co-efficient is .933 and .865 respectively and which is fairly high and indicates the questionnaire is suitable. The validity for Attitude towards Inclusive Education tool was found to be (.93) which indicates that it has posses' high validity.

Factor Analysis

Factor analysis (FA) attempts to identify underlying variables, of factors. The explain the pattern of correlations within a set of observed variables. Factor analysis is often used in data reduction to identify a small number of factors that explain most of the variance observed in a much larger number of manifest variables. Factor analysis can be also be used to generate hypothesis regarding causal mechanisms or to screen variables for subsequent analysis. In short, factor analysis is a mechanism to group the similar variables as a factor.

Table 1					
KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measure of So	0.907				
Bartlett's Test of Sphericity	Approx. Chi-Square	4117.85			
	df	820			
	Sig.	0.000			

KMO Test: Test the suitability of Factor Analysis. This measure varies between 0 and 1, and values closer to 1 are better.

Bartlett Test of Sphericity

Statistical test for overall significance of the correlations within a correlation matrix. Uses Chi Square distribution with p(p-1)/2 d.f., where p is number of variables. Sig. gives the p-value which is .000, less than 0.05 here. Thus there is significant for further analysis.

Total Variance Explained										
			Extraction Sums of Squared			Rotation Sums of Squared				
Component	Inifial Eigenvalues				Loadings			Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	12.359	30.143	30.143	12.359	30.143	30.143	6.03	14.706	14.706	
2	1.873	4.568	34.711	1.873	4.568	34.711	4.647	11.333	26.04	
3	1.609	3.925	38.635	1.609	3.925	38.635	4.577	11.163	37.202	
4	1.491	3.636	42.271	1.491	3.636	42.271	1.781	4.343	41.545	
5	1.397	3.408	45.679	1.397	3.408	45.679	1.695	4.135	45.679	
6	1.291	3.149	48.828							
7	1.236	3.015	51.844							
8	1.163	2.837	54.681							
9	1.117	2.725	57.406							
10	1.023	2.496	59.902							
11	0.966	2.357	62.259							
12	0.919	2.241	64.5							
13	0.887	2.163	66.663							
14	0.852	2.077	68.74							
15	0.824	2.01	70.75							
16	0.791	1.93	72.68							
17	0.747	1.822	74.502							
18	0.724	1.767	76.269							
19	0.693	1.69	77.959							
20	0.67	1.634	79.593							
21	0.621	1.514	81.107							
22	0.591	1.442	82.55							
23	0.58	1.414	83.964							
24	0.562	1.371	85.335							
25	0.547	1.333	86.669							
26	0.487	1.188	87.857							
27	0.46	1.123	88.98							
28	0.455	1.11	90.089							
29	0.43	1.048	91.138							
30	0.423	1.033	92.17							
31	0.409	0.998	93.168							
32	0.381	0.928	94.096							

Table 2

33	0.359	0.877	94.973					
34	0.325	0.793	95.766					
35	0.288	0.702	96.468					
36	0.28	0.682	97.15					
37	0.256	0.624	97.774					
38	0.251	0.613	98.387					
39	0.242	0.591	98.978					
40	0.223	0.543	99.521					
41	0.196	0.479	100					
Extraction Method: Principal Component Analysis.								

Total Variance Explained

We used principal component (PC) method of factor analysis. In PC method is called as component. The initial number of factors is the same as the number of variables used in the factor analysis. However, not all 41 factors will be retained. Researcher can choose number of factors or eigenvalue method. In the later method, the number of factors+ number of eigenvalues of correlation matrix more than 1. Initial Eigenvalues are the eigenvalues of correlation matrix. The above table shows that, only ten eigenvalues are more than 1. Also 10 factors explain 59.9% variance, while 11 factors explain 62.26% variance.

Extraction Sums of Squared Loadings

The number of rows in this panel of the table correspond to the number of factors retained. The values in this panel of the table are calculated in the same way as the values in the left panel. In some other method, these values may be smaller.

Rotation Sums of Squared Loading

The matrix of factor loadings is rotated orthogonally using Varimax rotation. Total amount of variance accounted for is redistributed over the five extracted factors. This helps making the factors distinct. The total variance explained of the factors should be more than 60%. Thus, the 5 factors explained 45.68% variance between the factors of homogeneous variables.

Figure – 1

Scree Plot

This is a plot between the eigen value and the factor number. From the second factor on, seen that the line is almost flat, meaning the each successive factor is accounting for smaller and smaller amounts of the total variance. This plot is called a 'Scree' Plot because it often looks like a 'Scree' slope, where rocks have fallen down and accumulated on the side of a mountain.

Table 3									
Rotated Component Matrix ^a									
	Component								
	1	2	3	4	5				
AT1	-0.013	-0.054	0.031	0.017	0.75				
AT2	0.146	0.116	0.016	0.188	0.607				
AT3	0.276	0.031	0.535	0.156	-0.02				
AT4	0.259	0.07	0.616	0.014	0.071				
AT5	-0.035	0.299	0.21	0.418	-0.434				
AT6	0.108	0.13	0.469	0.109	-0.262				
AT7	0.034	0.212	0.649	-0.002	0.19				
AT8	0.447	0.218	0.204	0.39	-0.049				
AT9	0.417	0.184	0.466	-0.018	0.058				
AT10	0.392	0.279	0.197	0.004	0.126				
AT11	0.493	0.014	0.185	0.248	0.067				
AT12	0.738	0.21	0.22	-0.12	-0.014				
AT13	0.293	0.271	0.544	-0.064	-0.097				
AT14	0.496	0.201	0.431	-0.03	0.031				
AT15	0.524	0.326	0.21	-0.029	-0.159				
AT16	-0.016	0.312	-0.014	-0.606	-0.04				
AT17	0.402	0.141	0.548	-0.188	-0.045				
AT18	0.507	0.179	0.359	0.059	-0.028				
AT19	0.743	0.298	0.119	0.069	0.079				
AT20	0.648	0.135	0.25	0.079	0.14				
AT21	0.483	0.35	0.43	-0.068	0.123				
AT22	0.253	0.587	0.244	0.001	0.138				
AT23	-0.243	0.37	0.261	0.392	0.094				
AT24	0.339	0.589	0.104	-0.011	-0.027				
AT25	0.079	0.103	-0.082	0.619	0.122				
AT26	0.262	0.429	0.252	-0.019	-0.154				
AT27	0.476	0.347	0.338	0.008	-0.001				
AT28	0.417	0.524	0.133	0.077	0.055				
AT29	0.513	0.255	0.184	0.424	-0.25				
AT30	0.139	0.611	0.224	0.125	-0.231				
AT31	0.213	0.132	0.46	0.21	-0.085				
AT32	0.161	0.457	0.486	0.169	0.126				
AT33	0.279	0.62	0.071	-0.023	0.081				
AT34	0.468	0.33	0.27	0.039	0.048				
AT35	0.181	0.436	0.414	-0.118	0.006				
AT36	0.351	0.521	0.179	0.161	-0.049				
AT37	0.423	0.264	0.392	0.113	-0.159				
AT38	0.413	0.28	0.228	-0.054	0.295				
AT39	0.335	0.334	0.325	-0.009	0.142				
AT40	0.55	0.455	0.057	0.075	-0.01				
AT41	0.142	0.409	0.4	0.055	-0.068				
Extraction Method: Principal Component Analysis.									
Rotation Met	Rotation Method: Varimax with Kaiser Normalization.								
a. Rotation converged in 10 iterations.									

Grouping of Variables into Factors

Select the highest factor loading (0.75) of each variable and group under a factor (Factor 1). Continue the same procedure to group the variables under the factors.

Naming of Factors

Rotated matrix reveals that variables 8, 10, 11, 12, 14, 15, 18, 19, 20, 21, 27, 29, 34, 37, 38. 39 and 40 under factor 1; variables 16, 22, 24, 26, 28, 30, 33, 35, 36 and 41 are grouped under factor 2; variables 3, 4, 6, 7, 9, 13, 17, 31 and 32 are grouped under factor 3; variables 5,23 and 25 are grouped under factor 4 and variables 1 and 2 under factor 5. Thus, Factor 1 may be named as Awareness, Factor 2 as Peer Relations, Factor 3 as Factor Academic Support, 4 as Motivations and Factor 5 as Guidance.

Figure 2

Conclusion

In this paper an example is given of the use of factor analysis. Nevertheless, a principal component analysis has been carried out with oblique rotation. This resulted into five correlated factors such as Awareness, Peer Relations, Academic Support, Motivations and Guidance, constituting several aspects of Attitude towards Inclusive Education. This can be important for tool construction, as it gives opportunities to improve the quality in constructing a tool effectively.

References

- 1. John W. Best, James V. Kahn, (2014). Research in Education, Tenth Edn, *PHI Learning Private Limited*, New Delhi.
- 2. Kothari CR, Gaurav Garg, (2016). Research Methodology Methods and Techniques, Third Edn, New Age International Publishers, New Delhi.
- 3. Mangal S.K., (2014). Essentials of Educational Psychology, PHI Learning Private Limited, New Delhi.
- 4. Melanie Hof., (2012). Questionnaire Evaluation with Factor Analysis and Cronbach's Alpha.
- 5. Suriani Hassan., et al., (2012). Using Factor Analysis on Survey Study of Factors Affecting Students' Learning Styles, International Journal of Applied Mathematics and Informatics, Issue 1, Volume 6.