Weak Convex Domination in Hypercubes

OPEN ACCESS

Volume: 8

Special Issue: 1

Month: May

Year: 2021

P-ISSN: 2321-788X

E-ISSN: 2582-0397

Impact Factor: 3.025

Citation:

Padmavathi, SV, and K. Krishnan. "Weak Convex Domination in Hypercubes." *Shanlax International Journal of Arts, Science and Humanities*, vol. 8, no. S1, 2021, pp. 50–53.

DOI:

https://doi. org/10.34293/sijash. v8iS4-May.4507

S. V. Padmavathi

Assistant Professor of Mathematics, Ramanujan Research Center in Mathematics Saraswathi Narayanan College, Madurai, Tamil Nadu, India

K. Krishnan

Vice- Principal and Associate Professor of Mathematics Saraswathi Narayanan College, Madurai, Tamil Nadu, India

Abstract

The n-cube Q_n is the graph whose vertex set is the set of all n-dimensional Boolean vectors, two vertices being joined if and only if they differ in exactly one coordinate. The n-star graph S_n is a simple graph whose vertex set is the set of all n! permutations of $\{1, 2, \dots, n\}$ and two vertices and are adjacent if and only if (1) (1) and (i) (i) for exactly one i, i 1.

In this paper we determine weak convex domination number for hypercubes. Also convex, weak convex, m - convex and ll-convex numbers of star and hypercube graphs are determined.

Keywords: Convexity number, Weak convexity number, Weak convex domination, m - convexity number, l1 - convexity number.

Mathematics Subject Classification: 05C12

Introduction

Graphs considered here are connected, simple. Akers and Krishnamurthy introduced the n-star graph S_n [1]. The vertex set of Snis the set of all n permutations of $\{1, 2, \dots, n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one i, $i \neq 1$.

The n-star graph is an alternative to n-cube with superior characteristics. Day and Tripathi have compared the topological properties of the n-star and the n-cube in [5]. Arumugam and Kala have determined some domination parameters of star graph and obtained bounds for γ , γ_i , γ_t , γ_c and γ_p in n-cube for $n \ge 7$ in [2].

Let G be a simple connected graph. A subset S of V is called a convex set if for any u, v in S, S contains all the vertices of every u -v geodesic in G. A subset S of V is called a weak convex set if for any u, v in S, S contains all the vertices of a u - v geodesic in G.

A subset S of V is called a m - convex set if for any u, v in S,S contains all the vertices of every u - v induced path in G.

A subset S of V is called al1 - convex set if it is convex and has a vertex which is adjacent to rest of the vertices of S. Maximum cardinality of a proper convex set is the convexity number of G. In a similar way we define weak convex number, m - convex number and l_1 - convex is the maximum of {Con < N[x] > /x ϵ V(G)}.

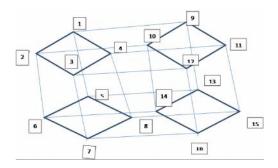
A subset S of V is called a domination set if every vertex in V - S is adjacent to at least one vertex in S. A dominating set is a weak convex dominating set if it is weak convex. So far exact value of domination number for large n in Q_n has not been determined. Here we determine weak convex domination number of Q_n for any n.

Results on Convexity Number Parameters

For Q $\operatorname{Con}(\ddot{\mathbf{Q}}_n) = 2^{n-1}$ for all n. wcon(Q_n) = 2^{n-1} for all n. $l_1 - \operatorname{con}(Q_n) = 2$ for all n. $mcon(Q_n) = 2^{n-1}$ for all n. For S $Con(S_2) = 3$. wcon(\tilde{S}_3) = 4. $mcon(S_3) = 2$ $l_1 - con(S_2) = 2.$ $\operatorname{Con}(S_{A}) = 6$. $wcon(S_{4}) = 18.$ $mcon(S_4) = 6$ $l_1 - con(S_4) = 3.$ In general $Con(S_n) = 6$ for all n. $wcon(S_n) = 2n$ for all n. $mcon(S_n) = 6$ for all n $l_1 - con(S_n) = n$ for all n, since girth of S_n is C_6 and circumference of S_n is C_{2n} . S_n is n-1 regular.

Main Results

Weak convex domination number in Q_n Theorem 2.1 $\gamma_{wc}(Q_n) = 2^{n-1}$ for all n. Proof: Q_n is a connected graph. For n = 1, $Q_1 = K_2$ and $\gamma_{wc}(Q_1) = 1 = 2^{1-1}$. For n = 2, $Q_2 = C_4$ and $\gamma_{wc}(Q_2) = 2 = 2^{2-1}$. For n = 3, $\gamma_{wc}(Q_3) = 4 = 2^{3-1}$. For n = 4 the structure of Q_4 is given below.



We know that $\gamma(Q_3) = 2$. Either {3, 5} or {1, 8} can be chosen that is diametrically opposite vertices are chosen. Therefore their distance is three and hence $\gamma_{wc}(Q_3) = 4$. Let $\gamma_{wc}(Q_3)$ set be {1,

3, 4, 5}= A (say). A dominates {9, 11, 12, 13}. Therefore vertices to be dominated in Q4 are {10, 14, 15, 16}. Minimum two vertices are required to dominate {10, 14, 15, 16}. Therefore {1, 3, 4, 5, 14, 16} dominate Q_4 , but they do not form a weak convex dominating set since geodesic between {1, 4} require 6 and geodesic between {3, 14} require 8. Thus minimum eight vertices are needed for a weak convex dominating set in Q_4 . These eight vertices can be chosen in any manner from the two layers of Q_3 . Hence we observe that for Q_n , 2^{n-1} vertices are required for a weak convex dominating set which can be got in any manner from the two layers of Q^{n-1} . Now we claim that 2^{n-1} is the minimum number of vertices for a weak convex dominating set in Q_n .

Let $k + l = 2^{n-1}$ where k, lare the number of vertices chosen in two layers of Q_{n-1} for a weak convex dominating set in Q_n .

Without loss of generality assume l < k. Let Q_{n-1}^{l} and Q_{n-1}^{2} denote the first and second layers of Q_{n-1} . Choose k vertices in Q_{n-1}^{l} in such a way that they form a weak convex dominating set in Q_{n-1} . Suppose we take l - 1 vertices in Q_{n-1}^{2} . Now we claim that k + l - 1 vertices do not form a weak convex dominating set in Q_{n} .

Case (i)

l-1 vertices are private neighbors of k vertices. Consider Q_{n-1}^2 , kvertices are dominated by k vertices of Q_{n-1}^1 . Rest of $2^{n-1} - k$ vertices in Q_{n-1}^2 must be dominated. Choose l-1 vertices among vertices of Q_{n-1}^2 so that weak convexity is maintained among l-1 vertices. Suppose there are m vertices from k vertices in Q_{n-1}^1 that are for domination in Q_{n-1}^1 then these m vertices have private neighbors in Q_{n-1}^1 itself. So private neighbors of these m vertices in Q_{n-1}^2 must be chosen so that domination is not violated in Q_{n-1}^2 .

Thus m + x = l - 1. Now k - (l - 1) private neighbors in Q^2_{n-1} of k vertices are not chosen. Since l < k and we choose l-1 vertices, there are atleast two vertices in k - (l - 1).

Let k -(l - 1) = 2. Let these vertices be u, v. Let private neighbors of u and v be u_1 and v_1 respectively in Q_{n-1}^1 . u_1 , v_1 are among k vertices. Since u,vare not among l - 1 vertices of Q_{n-1}^2 , u_1 , v_1 do not contribute for domination in Q_{n-1}^1 . Suppose u_2 , v_2 are adjacent to both u_1 and v_1 then Suppose private neighbors of u and v form an edge in Q_{n-1}^1 . Then single vertex that dominates u and v is either u or v. Therefore weak convexity is violated between u(v) and a vertex among k vertices which is adjacent to private neighbors of u(v) in Q_{n-1}^1 . Thus a contradiction.

If private neighbors of u and v do not form an edge in Q_{n-1}^1 and $N(u) \cap N(v) \neq \phi$ then weak convexity is violated in Q_{n-1}^2 which is a contradiction.

If private neighbors of u and v do not form an edge in Q_{n-1}^1 and $N(u) \cap N(v) = \varphi$ then either u or v is required for domination in Q_{n-1}^2 . Thus weak convexity is violated between u(v) and a vertex among k vertices which is adjacent to private neighbors of u(v) in Q_{n-1}^1 . Thus a contradiction.

Therefore, $k - (l - 1) \le 2$. Hence minimum one vertex must be included in any one of the layers of Q_{n-1} for a weak convex dominating set in Q_n .

Case (ii)

None of l - 1 vertices are private neighbors of k vertices. Clearly weak convexity is violated between any vertex of Q_{n-1}^1 and Q_{n-1}^2 .

Case (iii)

Some of l - 1 vertices are private neighbors of k vertices. By Case (i) we get the result. Interchanging k and l we get the result for k < l.

Conclusion

In this paper we determined weak convex domination number for hypercube graphs. We also determined convex, weak convex, m - convex and l_1 -convex numbers of star and hypercube graphs. Other domination parameters for hypercubes are under study in our group.

References

- S. B. Akers, D. Harei, B. Krishnamurthy,: The Star Graph: an Attractive Alternative to the n- Cube. In: Proceedings of the International Conference on parallel Processing.pp. 393-400 (1987)
- 2. S. Arumugam, R. Kala.:Domination parameters of hypercubes. Journal of the Indian Math. Soc.Vol.65, No.1-4, pp.31-38 (1998).
- 3. F. Buckley and F. Harary, Distance in Graphs, Redwood City: Addison-Wesley, (1990).
- 4. G. Chartrand, E. Wall Curtiss, Ping Zhang, The Convexity Number of a Graph, Graphs and combinatorics, 18, 209-217, (2002).
- 5. K. Day, A. Tripathi.: A comparative Study of Topological Properties of Hypercubes and Star Graphs, IEEE Trans. On Parallel Distributed Systems 5(1), 31-38 (1994).
- 6. Douglas B. West, Introduction to Graph Theory, Second Edition Prentice Hall, (2001).
- 7. Eric Degreef, The Convex sum and direct sum space, A quarterly J. of Pure and applied Maths., 56, 1-2, (1982).
- 8. M. Farber and R.E. Jamison, On Local Convexity in Graphs, Discrete Mathematics, 66, 231-247, (1987).
- 9. Gerald Sierksma, Convexity on union of sets, composite mathematica, 42, 391-400, (1981).
- 10. J. Gimbel, Some Remarks on the Convexity Number of a Graph, Graphs and Combinatorics, 19, 351-361, (2003).
- 11. F. Harary, Graph Theory, Addison Wesley, reading Mass, (1969).