Weak Convex Domination in Hypercubes

OPEN ACCESS

Volume: 8
Special Issue: 1
Month: May

Year: 2021
P-ISSN: 2321-788X

E-ISSN: 2582-0397

Impact Factor: 3.025
Citation:
Padmavathi, SV, and
K. Krishnan. "Weak

Convex Domination in
Hypercubes." Shanlax
International Journal
of Arts, Science and Humanities, vol. 8, no. S1, 2021, pp. 50-53.

DOI:

https://doi. org/10.34293/sijash. v8iS4-May. 4507

S. V. Padmavathi

Assistant Professor of Mathematics, Ramanujan Research Center in Mathematics Saraswathi Narayanan College, Madurai, Tamil Nadu, India

K. Krishnan

Vice- Principal and Associate Professor of Mathematics
Saraswathi Narayanan College, Madurai, Tamil Nadu, India

Abstract

The n-cube Q_{n} is the graph whose vertex set is the set of all n-dimensional Boolean vectors, two vertices being joined if and only if they differ in exactly one coordinate. The n-star graph S_{n} is a simple graph whose vertex set is the set of all n! permutations of $\{1,2, \cdots, n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \nexists \beta(i)$ for exactly one $i, i \neq 1$.

In this paper we determine weak convex domination number for hypercubes. Also convex, weak convex, m - convex and ll-convex numbers of star and hypercube graphs are determined.

Keywords: Convexity number, Weak convexity number, Weak convex domination, m - convexity number, 11 - convexity number.

Mathematics Subject Classification: 05C12

Introduction

Graphs considered here are connected, simple. Akers and Krishnamurthy introduced the n-star graph S_{n} [1]. The vertex set of Snis the set of all $\mathrm{n} \square$ permutations of $\{1,2, \cdots, \mathrm{n}\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one $i, i \neq 1$.

The n-star graph is an alternative to n-cube with superior characteristics. Day and Tripathi have compared the topological properties of the n-star and the n-cube in [5]. Arumugam and Kala have determined some domination parameters of star graph and obtained bounds for $\gamma, \gamma_{\mathrm{i}}, \gamma_{\mathrm{t}}, \gamma \mathrm{c}$ and γ_{p} in n -cube for $\mathrm{n} \geq 7$ in [2].

Let G be a simple connected graph. A subset S of V is called a convex set if for any u, v in S, S contains all the vertices of every u -v geodesic in G . A subset S of V is called a weak convex set if for any u, v in S, S contains all the vertices of $a u-v$ geodesic in G.

A subset S of V is called a m - convex set if for any u, v in S, S contains all the vertices of every $u-v$ induced path in G.

A subset S of V is called all - convex set if it is convex and has a vertex which is adjacent to rest of the vertices of S. Maximum
cardinality of a proper convex set is the convexity number of G. In a similar way we define weak convex number, m - convex number and l_{1} - convex is the maximum of $\{C o n<N[x]>/ x \varepsilon V(G)\}$.

A subset S of V is called a domination set if every vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to at least one vertex in S. A dominating set is a weak convex dominating set if it is weak convex. So far exact value of domination number for large n in Q_{n} has not been determined. Here we determine weak convex domination number of Q_{n} for any n.

Results on Convexity Number Parameters

For Q_{n}
$\operatorname{Con}\left(\mathrm{Q}_{\mathrm{n}}\right)=2^{\mathrm{n}-1}$ for all n .
$\operatorname{wcon}\left(Q_{n}\right)=2^{n-1}$ for all n.
$1_{1}-\operatorname{con}\left(\mathrm{Q}_{\mathrm{n}}\right)=2$ for all n .
$\operatorname{mcon}\left(\mathrm{Q}_{\mathrm{n}}\right)=2^{\mathrm{n}-1}$ for all n .
For S_{n}
$\operatorname{Con}\left(\mathrm{S}_{3}\right)=3$.
$w \operatorname{con}\left(S_{3}\right)=4$.
$\operatorname{mcon}\left(\mathrm{S}_{3}\right)=2$
$1_{1}-\operatorname{con}\left(\mathrm{S}_{3}\right)=2$.
$\operatorname{Con}\left(\mathrm{S}_{4}\right)=6$.
$\operatorname{wcon}\left(\mathrm{S}_{4}\right)=18$.
$\operatorname{mcon}\left(\mathrm{S}_{4}\right)=6$
$1_{1}-\operatorname{con}\left(\mathrm{S}_{4}\right)=3$.
In general
$\operatorname{Con}\left(\mathrm{S}_{\mathrm{n}}\right)=6$ for all n .
$\operatorname{wcon}\left(\mathrm{S}_{\mathrm{n}}\right)=2 \mathrm{n}$ for all n .
$\operatorname{mcon}\left(\mathrm{S}_{\mathrm{n}}\right)=6$ for all n
$1_{1}-\operatorname{con}\left(S_{n}\right)=n$ for all n, since girth of S_{n} is C_{6} and circumference of S_{n} is $C_{2 n} . S_{n}$ is $n-1$ regular.

Main Results

Weak convex domination number in Q_{n}
Theorem $2.1 \gamma_{w c}\left(Q_{n}\right)=2^{n-1}$ for all n.
Proof: Q_{n} is a connected graph. For $\mathrm{n}=1, \mathrm{Q}_{1}=\mathrm{K}_{2}$ and $\gamma_{\mathrm{wc}}\left(\mathrm{Q}_{1}\right)=1=2^{1-1}$.
For $\mathrm{n}=2, \mathrm{Q}_{2}=\mathrm{C}_{4}$ and $\gamma_{\mathrm{wc}}\left(\mathrm{Q}_{2}\right)=2=2^{2-1}$.
For $\mathrm{n}=3, \gamma_{\mathrm{wc}}\left(\mathrm{Q}_{3}\right)=4=2^{3-1}$.
For $\mathrm{n}=4$ the structure of Q_{4} is given below.

We know that $\gamma\left(\mathrm{Q}_{3}\right)=2$. Either $\{3,5\}$ or $\{1,8\}$ can be chosen that is diametrically opposite vertices are chosen. Therefore their distance is three and hence $\gamma_{w c}\left(Q_{3}\right)=4$. Let $\gamma_{w c}\left(Q_{3}\right)$ set be $\{1$,
$3,4,5\}=\mathrm{A}$ (say). A dominates $\{9,11,12,13\}$. Therefore vertices to be dominated in Q4 are $\{10$, $14,15,16\}$.Minimum two vertices are required to dominate $\{10,14,15,16\}$. Therefore $\{1,3,4,5$, $14,16\}$ dominate Q_{4}, but they do not form a weak convex dominating set since geodesic between $\{1,4\}$ require 6 and geodesic between $\{3,14\}$ require 8 . Thus minimum eight vertices are needed for a weak convex dominating set in Q_{4}. These eight vertices can be chosen in any manner from the two layers of Q_{3}. Hence we observe that for $Q_{n}, 2^{n-1}$ vertices are required for a weak convex dominating set which can be got in any manner from the two layers of Q^{n-1}. Now we claim that 2^{n-1} is the minimum number of vertices for a weak convex dominating set in Q_{n}.

Let $k+1=2^{n-1}$ where k, lare the number of vertices chosen in two layers of Q_{n-1} for a weak convex dominating set in Q_{n}.

Without loss of generality assume $1<k$. Let $\mathrm{Q}^{1}{ }_{\mathrm{n}-1}$ and $\mathrm{Q}^{2}{ }_{\mathrm{n}-1}$ denote the first and second layers of $\mathrm{Q}_{\mathrm{n}-1}$. Choose k vertices in Q^{1} in such a way that they form a weak convex dominating set in $\mathrm{Q}_{\mathrm{n}-1}$. Suppose we take $1-1$ vertices in $\mathrm{Q}_{\mathrm{n}-1}^{2}$. Now we claim that $\mathrm{k}+1-1$ vertices do not form a weak convex dominating set in Q_{n}.

Case (i)

$1-1$ vertices are private neighbors of k vertices. Consider $Q^{2}{ }_{n-1}$. kvertices are dominated by k vertices of $\mathrm{Q}^{1}{ }_{\mathrm{n}-1}$. Rest of $2^{\mathrm{n}-1}-\mathrm{k}$ vertices in $\mathrm{Q}^{2}{ }_{\mathrm{n}-1}$ must be dominated. Choose $1-1$ vertices among vertices of $Q^{2}-1$ so that weak convexity is maintained among $1-1$ vertices. Suppose there are m vertices from k vertices in Q^{1} n-1 that are for domination in $Q^{1}{ }_{n-1}$ then these m vertices have private neighbors in $\mathrm{Q}^{1}{ }_{\mathrm{n}-1}$ itself. So private neighbors of these m vertices in $\mathrm{Q}^{2}{ }_{\mathrm{n}-1}$ must be chosen so that domination is not violated in $\mathrm{Q}^{2}{ }_{\mathrm{n}-1}$.

Thus $m+x=1-1$. Now $k-(1-1)$ private neighbors in Q_{n-1}^{2} of k vertices are not chosen. Since $1<\mathrm{k}$ and we choose $1-1$ vertices, there are atleast two vertices in $\mathrm{k}-(1-1)$.

Let $k-(1-1)=2$. Let these vertices be u, v. Let private neighbors of u and v be u_{1} and v_{1} respectively in $Q^{1}{ }_{n-1} . u_{1}, v_{1}$ are among k vertices. Since u, vare not among $1-1$ vertices of $Q^{2}{ }_{n-1}$, $\mathrm{u}_{1}, \mathrm{v}_{1}$ do not contribute for domination in $\mathrm{Q}_{\mathrm{n}-1}^{1}$. Suppose $\mathrm{u}_{2}, \mathrm{v}_{2}$ are adjacent to both u_{1} and v_{1} then Suppose private neighbors of u and v form an edge in $Q^{1}{ }_{n-1}$. Then single vertex that dominates u and v is either u or v. Therefore weak convexity is violated between $u(v)$ and a vertex among k vertices which is adjacent to private neighbors of $u(v)$ in $Q^{1}{ }_{n-1}$. Thus a contradiction.

If private neighbors of u and v do not form an edge in $Q^{1}{ }_{n-1}$ and $N(u) \cap N(v) \neq \varphi$ then weak convexity is violated in Q^{2}, which is a contradiction.

If private neighbors of u and v do not form an edge in $Q^{1}{ }_{n-1}$ and $N(u) \cap N(v)=\varphi$ then either u or v is required for domination in $\mathrm{Q}^{2}{ }_{\mathrm{n}-1}$. Thus weak convexity is violated between $\mathrm{u}(\mathrm{v})$ and a vertex among k vertices which is adjacent to private neighbors of $u(v)$ in $Q^{1}{ }_{n-1}$. Thus a contradiction.

Therefore, $\mathrm{k}-(1-1)<2$. Hence minimum one vertex must be included in any one of the layers of Q_{n-1} for a weak convex dominating set in Q_{n}.

Case (ii)

None of $1-1$ vertices are private neighbors of k vertices. Clearly weak convexity is violated between any vertex of $\mathrm{Q}^{1}{ }_{\mathrm{n}-1}$ and $\mathrm{Q}^{2}{ }_{\mathrm{n}-1}$.

Case (iii)

Some of $1-1$ vertices are private neighbors of k vertices. By Case (i) we get the result. Interchanging k and l we get the result for $\mathrm{k}<1$.

Conclusion

In this paper we determined weak convex domination number for hypercube graphs. We also determined convex, weak convex, m - convex and l_{1}-convex numbers of star and hypercube graphs. Other domination parameters for hypercubes are under study in our group.

References

1. S. B. Akers, D. Harei, B. Krishnamurthy,: The Star Graph: an Attractive Alternative to the n- Cube. In: Proceedings of the International Conference on parallel Processing.pp. 393-400 (1987)
2. S. Arumugam, R. Kala.:Domination parameters of hypercubes. Journal of the Indian Math. Soc.Vol.65, No.1-4, pp.31-38 (1998).
3. F. Buckley and F. Harary,Distance in Graphs, Redwood City: Addison-Wesley, (1990).
4. G. Chartrand, E. Wall Curtiss, Ping Zhang, The Convexity Number of a Graph, Graphs and combinatorics, 18, 209-217, (2002).
5. K. Day, A. Tripathi.: A comparative Study of Topological Properties of Hypercubes and Star Graphs, IEEE Trans. On Parallel Distributed Systems 5(1), 31-38 (1994).
6. Douglas B. West, Introduction to Graph Theory, Second Edition Prentice - Hall, (2001).
7. Eric Degreef, The Convex sum and direct sum space, A quarterly J. of Pure and applied Maths., 56, 1-2, (1982).
8. M. Farber and R.E. Jamison,On Local Convexity in Graphs, Discrete Mathematics, 66, 231-247, (1987).
9. Gerald Sierksma, Convexity on union of sets, composite mathematica, 42, 391-400, (1981).
10. J. Gimbel, Some Remarks on the Convexity Number of a Graph, Graphs and Combinatorics, 19, 351-361, (2003).
11. F. Harary, Graph Theory, Addison Wesley, reading Mass, (1969).
