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Abstract

The n-cube Q
n
 is the graph whose vertex set is the set of all n-dimensional Boolean

vectors, two vertices being joined if and only if they differ in exactly one coordinate.
The n-star graph S

n
 is a simple graph whose vertex set is the set of all n! permutations

of {1, 2, • • • , n} and two vertices α and β are adjacent if and only if α(1)≠β(1) and
α(i) ≠β(i) for exactly one i ,i≠ 1.

In this paper we determine weak convex domination number for hypercubes. Also
convex, weak convex, m - convex and l1-convex numbers of star and hypercube
graphs are determined.

Keywords: Convexity number, Weak convexity number, Weak convex domination,
m - convexity number, l1 - convexity number.

Mathematics Subject Classi cation: 05C12

Introduction
 Graphs considered here are connected, simple. Akers and
Krishnamurthy introduced the n-star graph S

n
 [1]. The vertex set of

and β are adjacent if and only if α(1) ≠β(1) and α(i) ≠β(i) for exactly
one i, i ≠ 1.
 The n-star graph is an alternative to n-cube with superior
characteristics. Day and Tripathi have compared the topological
properties of the n-star and the n-cube in [5]. Arumugam and Kala
have determined some domination parameters of star graph and
obtained bounds for γ, γ

i
, γ

t
, γc and γ

p
 in n-cube for n ≥ 7 in  [2].

 Let G be a simple connected graph. A subset S of V is called a
convex set if for any u, v in S, S contains all the vertices of every u
− v geodesic in G. A subset S of V is called a weak convex set if for
any u, v in S , S contains all the vertices of a u − v geodesic in G.
 A subset S of V is called a m - convex set if for any u, v in S,S
contains all the vertices of every u − v induced path in G.
 A subset S of V is called al1 - convex set if it is convex and has
a vertex which is adjacent to rest of the vertices of S. Maximum
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cardinality of a proper convex set is the convexity number of G. In a similar way we defi ne weak
convex number, m - convex number and l

1
 - convex is the maximum of {Con < N[x] > /x εV(G)}.

 A subset S of V is called a domination set if every vertex in V − S is adjacent to at least one
vertex in S. A dominating set is a weak convex dominating set if it is weak convex. So far exact
value of domination number for large n in Q

n
 has not been determined. Here we determine weak

convex domination number of Q
n
 for any n.

Results on Convexity Number Parameters
For Q

n

Con(Q
n
) = 2n−1 for all n.

wcon(Q
n
) = 2n − 1 for all n.

l
1
 − con(Q

n
) = 2 for all n.

mcon(Q
n
) = 2n−1 for all n.

For S
n

Con(S
3
) = 3 .

wcon(S
3
) = 4.

mcon(S
3
) = 2

l
1
 − con(S

3
) = 2.

Con(S
4
) = 6 .

wcon(S
4
) = 18.

mcon(S
4
) = 6

l
1
 − con(S

4
) = 3.

In general
Con(S

n
) = 6 for all n .

wcon(S
n
) = 2n for all n.

mcon(S
n
) = 6 for all n

l
1
 − con(S

n
) = n for all n, since girth of S

n
 is C

6
 and circumference of S

n
 is C

2n
. S

n
 is n-1 regular.

Main Results
Weak convex domination number in Q

n

Theorem 2.1 γ
wc

(Q
n
) = 2n−1for all n.

Proof: Q
n
is a connected graph. For n = 1 ,Q

1
= K

2
 and γ

wc
(Q

1
) = 1= 21−1.

For n = 2,Q
2
= C

4
 and γ

wc
(Q

2
) = 2= 22−1.

For n = 3, γ
wc

(Q
3
) = 4= 23−1.

For n = 4 the structure of Q
4
 is given below.

 We know that γ(Q
3
) = 2. Either {3, 5} or {1, 8} can be chosen that is diametrically opposite

vertices are chosen. Therefore their distance is three and hence γ
wc

(Q
3
)= 4. Let γ

wc
(Q

3
) set be {1,
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3, 4, 5}= A (say). A dominates {9, 11, 12, 13}. Therefore vertices to be dominated in Q4 are {10,
14, 15, 16}.Minimum two vertices are required to dominate {10, 14, 15, 16}. Therefore {1, 3, 4, 5,
14, 16} dominate Q

4
, but they do not form a weak convex dominating set since geodesic between

{1, 4} require 6 and geodesic between {3, 14} require 8. Thus minimum eight vertices are needed
for a weak convex dominating set in Q

4
. These eight vertices can be chosen in any manner from

the two layers of Q
3
. Hence we observe that for Q

n
, 2n−1 vertices are required for a weak convex

dominating set which can be got in any manner from the two layers of Qn−1. Now we claim that 2n−1

is the minimum number of vertices for a weak convex dominating set in Q
n
.

 Let k + l = 2n−1 where k,lare the number of vertices chosen in two layers of Qn−1for a weak convex
dominating set in Q

n
.

 Without loss of generality assume l < k. Let Q1
n−1 and Q2

n−1 denote the fi rst and second layers of
Qn−1. Choose k vertices in Q1

n−1in such a way that they form a weak convex dominating set in Qn−1.
Suppose we take l − 1 vertices in Q2

n−1. Now we claim that k + l − 1 vertices do not form a weak
convex dominating set in Q

n
.

Case (i)
 l − 1 vertices are private neighbors of k vertices. Consider Q2

n−1. kvertices are dominated by k
vertices of Q1

n−1. Rest of 2n−1 − k vertices in Q2
n−1 must be dominated. Choose l − 1 vertices among

vertices of Q2
n−1so that weak convexity is maintained among l − 1 vertices. Suppose there are m

vertices from k vertices in Q1
n−1that are for domination in Q1

n−1then these m vertices have private
neighbors in Q1

n−1itself. So private neighbors of these m vertices in Q2
n−1 must be chosen so that

domination is not violated in Q2
n−1.

 Thus m + x = l − 1. Now k − (l − 1) private neighbors in Q2
n−1 of k vertices are not chosen. Since

l < k and we choose l−1 vertices, there are atleast two vertices in k − (l − 1).
 Let k −(l −1) = 2. Let these vertices be u, v. Let private neighbors of u and v be u

1
 and v

1

respectively in Q1
n−1. u1

, v
1
 are among k vertices. Since u,vare not among l −1 vertices of Q2

n−1,
u

1
, v

1
 do not contribute for domination in Q1

n−1. Suppose u
2
, v

2
 are adjacent to both u

1
 and v

1
 then

Suppose private neighbors of u and v form an edge in Q1
n−1. Then single vertex that dominates u

and v is either u or v. Therefore weak convexity is violated between u(v) and a vertex among k
vertices which is adjacent to private neighbors of u(v) in Q1

n−1. Thus a contradiction.
 If private neighbors of u and v do not form an edge in Q1

n−1 and N(u)⋂N(v) ≠ φ then weak
convexity is violated in Q2

n−1 which is a contradiction.
 If private neighbors of u and v do not form an edge in Q1

n−1 and N(u)⋂N(v) = φ then either u or
v is required for domination in Q2

n−1. Thus weak convexity is violated between u(v) and a vertex
among k vertices which is adjacent to private neighbors of u(v) in Q1

n−1. Thus a contradiction.
 Therefore, k − (l − 1)<2. Hence minimum one vertex must be included in any one of the layers
of Qn−1 for a weak convex dominating set in Q

n
.

Case (ii)
 None of l − 1 vertices are private neighbors of k vertices. Clearly weak convexity is violated
between any vertex of Q1

n−1and Q2
n−1.

Case (iii)
 Some of l − 1 vertices are private neighbors of k vertices. By Case (i) we get the result.
Interchanging k and l we get the result for k < l.
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Conclusion
 In this paper we determined weak convex domination number for hypercube graphs. We also
determined convex, weak convex, m - convex and l

1
-convex numbers of star and hypercube graphs.

Other domination parameters for hypercubes are under study in our group.
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