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Abstract
In this, paper we introduce and investigate, the notion of

sets via idealization by using local function and
studied their some properties.
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Introduction
Ideal in topological space have been considered since 1930
by Kuratowski [1] and Vaidyanathaswamy [2]. After that
ideal topology generalized in general topology by Jankovi
and Hamleet [3]. In 2005 Hatir and Noir iintroduced the

, , [4]. Finally in
2014 , se , sets are
introuced by R.Shanthi and M.Rameshkumar [5]. In this paper
we introduced the notion of , ,

set and studied some properties of their.

Preliminaries
 Let (X, τ) be topological space with no separation properties
assumed. For a subset of topologicalspace (X, τ), Cl (A) and Int
(A) denote the closure and interior of A in (X, τ) resp. An ideal I of
topological space is collection of non-empty subset of X together
with the following.
 (i) (ii) .
The triplet forms. (X, τ, I) is called the ideal topological space where

is topological space of X with an ideal I. Given a topological space
(X, τ) with an ideal Ion X If P(x) is the set of all subset of X, a set
operator (.)∗ , called a local function [5] of A with respect
to τ and I is defi ned as follows: for for
every Additionally, cl*(A) =
AUA* defi nes kuratowski closure operator for a topology τ* (I,
τ), called the *- topology and fi ner than τ.
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De nition 2.1
 Let (X, τ) be a topological space. A subset A of X is said be a -open set [6] if there exists
anopen set U in X such that . The complement of -open set is –closed. The
collection of all –open sets in X is denoted by O(X) is called the -local function. The semi
closure of A in (X,τ) is denoted by the intersection of all -closed setcontaining A and is denoted
by .

De nition 2.2
For (∗ , for every we

write ∗ (∗ . .The closure operator for a
topology is defi ned as follows ∗ for a topology ∗ and
denotes the interior of the set A in .

De nition 2.3
 A Subset of topological space X is said to be,

De nition 2.4
A Subset of topological space X is said to be,∗ ∗
S ∗
Lemma: For a subset of topological space, the following properties hold.

Lemma: let A be a topological space and A,B be subsets of X. then following properties hold:∗ ∗∗ ∗∗ ∗ ∗
∗)∗ ∗∗ ∗ ∗ ∗
In this we defi ne the sets, and studied some

properties of their.

De nition 3.1
A Subset of topological space X is said to be.
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Proposition 3.2
For a subset of an ideal topological space the following hold:
*Every set is .

Proof
Let A be a .Thus,we have ∗⊆ . A is an *Every
*Every set is

Proof
Let A be a . Thus,we have ∗

. A is an .

*Every setis

Proof:
Let A be . Thus,we have ∗

. A is an .

Remark 3.3
 Converse of the above proposition need not be true as seen from the following example.

Example 3.4
τ= {φ,{a},{b},{a,b},{a,d},{abd},X} and I={φ,{b},{c},{bc}}. then the set A = {b,c},

. A B is
C is

Proposition 3.5
 Every open set of an ideal topological space is an

Proof:
Let A be a . Thus,we have ∗

.Then A is an .

Remark 3.4
 Converse of the above proposition 3.3 need not be true as seen from the following example.

Example 3.6
τ =

Proposition 3.7
 Every

Proof
The proof is obvious.

Remark 3.8
 Converse of the above proposition 3.7 need not be true as seen from the following example.
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Example 3.9
τ={φ, {a}, {b}, {a, b}, {a, d}, {a, b, d}, X} and I = {φ, {b}, {c}, {b, c}}. then the setA = {a} is a and A

Proposition 3.10
For a subset of an ideal topological space the following hold:
Every set is .
Every set is
Every set is

Proof:
The proof is obvious.

Remark 3.11
 Converse of the proposition 3.10 need not be true. DFFD

Proposition 3.12
 Let (X, τ, I) be an ideal topological space and A an open subset of  X. Then the following hold,
if I={φ}, then
1. A is set if and only if .

Proof
 If I= {φ}, A= plc(A) for any subset Ao f X and hence Cl*p(A) = A*UA=pCl(A).By proposition
3.2. Every is an . Conversely if A is . Then

. Therefore,
A is . Thus, A is set if and only if .
2. A is set if and only if

Proof
 If I= {φ}, A= pCl(A) for any subset A of X and hence Cl*p(A) = A*UA=pCl(A). By proposition
3.2. Every is an . Conversely is fA is .
Then .
Therefore, A is . Thus, A is set if and only if .
3. A is set if and only if

Proof
 If I= {φ}, A= pCl(A) for any subset A of X and hence Cl*p(A) = A*UA= pCl(A). By proposition
3.2. Every is an . Conversely if A is . Then

. Therefore, A is −
. Thus, A is set if and only if
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