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Objectives and Planes 

 This dissertation under the title ”On the Recent Colorings of 

Graphs” is in the field of graph theory. The contents of this thesis may 

be conveniently divided into five chapters, in which the first is the 

introductory chapter, the second chapter presents many results on T - 

colorings and T -graphs. The third one discusses and presents new 

results on L(2, 1) - colorings and Radio colorings of graphs. Fourth 

deals with the study of Hamiltonian colorings of graphs. The 

lastchapter contains many further results on Hamiltonian colorings of 

graphs. 

 Chapter-1 begins with the objectives and planes, followed by 

basic definitions and notations, needed for the subsequent chapters. 

 Chapter-2, in Section 2.1, we discuss and present new results and 

bounds on the T - colorings of graphs and certain related concepts 

like: complementary coloring of T - colorings, T -chromatic numbers 

of graphs, c -spans, andT -spans. In Section 2.2, we study and present 

results on T -graphs and graph homomorphisms, properties of graph 

homomorphisms, weakly perfect graphs and it related conjecture. 

Further, we develop the relationship between span of a complete graph 

and the clique size of the T -graphs. In Section 2.3 we present 

theorems and examples on weakly perfect graphs with fixed chromatic 

numbers. Chapter-3, Section 3.1, we study and present results on L(2, 

1) -colorings of graphs and certain related concepts like: c -span and L 

-span of L(2, 1) -colorings of graphs. Also, we present some upper 

bounds for L -span of graphs and their related conjecture. In Section 

3.2, Radio colorings of graphs, the complementary colorings of radio 

coloring of graphs, and k -radio chromatic numbers are determined for 

connected graphs having fixed diameter. It is shown that certain 

properties with simple upper bounds exist for rcl(G). In Section 3.3, 

we discuss and present results on Radio antipodal colorings of graphs, 

antipodal chromatic numbers of paths.  
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 Also, we present a sufficient condition for the 

antipodal chromatic number of a connected subgraph 

of a connected graph G of diameter d to be bounded 

above by ac(G). Finally, an upper bound for the 

antipodal chromatic number of paths determined. In 

Section 3.4, various bounds for antipodal chromatic 

numbers of graphs are presented. 

 In Chapter-4, we study and present new results 

on hamiltonian colorings of graphs, hamiltonian 

chromatic number of graphs. Further the minimum 

hamiltonian coloring of graphs, graphs with equal 

hamiltonian chromatic number and antipodal 

chromatic number of graphs studied in detail. Some 

bounds for the hamiltonian chromatic numbers of 

graphs are presented. 
 

Basic Definitions and Notations 

 A graph G is a finite nonempty set V of objects 

called vertices, together with a set E of 2 -element 

subsets of V called edges. Each edge {u, v} of V is 

generally denoted by uv (or vu. ) If e = uv, then the 

edge e is said to join u and v . The number of 

vertices in a graph G is the order of G and the 

number of edges is the size of G. To indicate that a 

graph G has vertex set V and edge set E, we 

sometimes write G = (V, E). To emphasize that V is 

the vertex set of a graph G, we often V as V(G). For 

the same reason, we also write E as E(G). A graph of 

order 1 is called a trivial graph and a nontrivial graph 

has two or more vertices. 

 If uv is an edge of a graph G, then u and v are 

adjacent vertices in G . Two adjacent vertices are 

referred as neighbors of each other. If uv and vw are 

distinct edges in a graph G, then uv and vw are 

adjacent edges in G . The vertex u and the edge uv 

are said to be incident with each other. Similarly v 

and uv are incident. 

 The degree of a vertex v in a graph G is the 

number of vertices in G that are adjacent to v, and is 

denoted by degG(v) (or deg(v). ) A vertex of degree 

0 is referred as an isolated vertex and a vertex degree 

1 is an end-vertex. An edge incident with an end-

vertex is called a pendent edge. The largest degree 

among the vertices is called the maximum degree of 

G is denoted by (G). The minimum degree of G is 

denoted by δ(G). Thus if v is a vertex of a graph G 

order n, then 0 ≤ δ(G) ≤ deg(v) ≤ (G) ≤ n − 1. 

 A graph G is finite if both its vertex set and edge 

set are finite. A graph G is simple if it has no loops( 

i.e., edges having identical ends) and no two of its 

edges join the same pair of vertices. A graph H is 

said to be a subgraph of a graph G if V(H) ⊆ V(G) 

andE(H) ⊆ E(G). If V(H) = V(G), then H is called a 

spanning subgraph of G. If H is asubgraph of G and 

either V(H) is a proper subset of V(G) or E(H) is a 

proper subset of E(G), then H is said to be a proper 

subgraph of G. For a nonempty subset S of V(G), the 

subgraph G[S ] of G induced by S has S as its vertex 

set and two vertices u and v of S are adjacent in G[S 

] if and only if u and v are adjacent in G. A subgraph 

H of a graph G is called induced subgraph of G if 

there a nonempty subset S of V(G) such that H = 

G[S ]. Thus G[V(G)] = G. For a nonempty set X of 

edges of a graph G, the subgraph G[X] induced by X 

has X as its edges set and its vertex set belongs to the 

vertices of X. A nontrivial graph G is called a 

bipartite graph if it is possible to partition V(G) into 

two non-empty subsets U and W (called partite sets) 

such that every edge of G joins a vertex of U to a 

vertex of W. A bipartite graph having partite sets U 

and W is called a complete bipartite graph if every 

vertex of U is adjacent to every vertex of W, then 

this complete bipartite graph is denoted by Ks,t (or 

Kt,s ). The graph K1,t is called a star. 

 A walk in a graph G is a finite non-empty 

sequence W = v0, e1, v1, e2, · · · ,ek, vk whose 

terms are alternately vertices and edges, such that 1 ≤ 

i ≤ k, the ends of ei are vi−1 and vi . A walk whose 

initial and terminal verticesare distinct is an open 

walk; otherwise, it is a closed walk. A walk of a 

graph G in which no edge is repeated is called a trail 

in G. A walk of a graph G in which no vertex and no 

edges repeated is called a path. Any closed path is 

called a cycle. A nontrivial closed walk of a graph G 

in which no edge is repeated is called a circuit in G. 

Two vertices u and v in a graph G are said to be 

connected if G contains a path connecting u and v 

i.e., (u, v) - path. A graph G is said to be connected if 

every two vertices of G are connected. A graph G is 

not connected is called a disconnected graph. A 

connected graph without cycles is called a tree. 
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 Let G be a nontrivial connected graph. A circuit 

of G that contains every edge of G is called an 

Eulerian Circuit, while an open trail that contains 

every edge of G is an Eulerian trail. A connected 

graph G is called Eulierian if G contains anEulireian 

circuit. Let G be a graph, a path in G that contains 

every vertex of G is called a Hamiltonian path of G, 

while a cycle in G that contains every vertex of G is 

called a Hamiltonian cycle ofG. A graph that 

contains a Hamiltonian cycle is called Hamiltonian 

graph. 

 The distance d(u, v) from a vertex u to vertex v 

in a connected graph G is the minimum length of the 

(u, v) -path in G. A (u, v) -path of length d(u, v) is 

called a (u, v) - geodesic. The distance function d 

defined above satisfies the following properties in a 

connected graph G : 

(1) d(u, v) ≥ 0 for every two vertices u and v of G 

(2) d(u, v) = 0 if and only if u = v for all u, v ∈ 

 V(G) 

(3) d(u, v) = d(v, u) foe all u, v ∈ V(G) (the 

 symmetric property) 

(4) d(u, w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V(G) 

 (the triangle inequality). 

 Since dsatisfies the above (4) properties dis a 

metric on V(G). (V(G), d) forms a metric 

space.Since dis symmetric, we can speak of the 

”distancebetween two vertices u and v ” rather than 

the ” distance from v to u ” 

 The eccentricity e(v) of a vertex v in a 

connected graph G is the distance between v and a 

vertex farthest from v in G. The diameter of a 

connected graph G denoted by diam (G) of G is the 

greatest eccentricity among the vertices of G, while 

the radiusof G denoted by rad (G) is the smallest 

eccentricity among the vertices of G. The diameter of 

G is also the greatest distance between any two 

vertices of G. A vertex v with e(v) = rad(G) is called 

a central vertex of G and a vertex v with e(v) = 

diam(G) is called a peripheral vertex of G. Two 

vertices u and v of a graph G with d(u, v) = diam(G) 

are called the antipodal vertices of G. If u and v are 

antipodal vertices in G, then each of u and v is called 

a peripheral vertex of G . 

  

 A proper vertex coloring of a graph G is an 

assignment of colors to the vertices ofG, such that 

adjacent vertices of G are colored differently. A 

graph G is a k -colorable,if there exists a proper 

coloring of G from the set of k colors. In other 

words, G isk -colorable if there exists a k -coloring 

of G. The minimum positive integer k for whichG is 

k -colorable is called the chromatic number of G and 

is denoted by χ(G).Additional definitions, results or 

notations will be introduced as the need arises. 

 

On Hamiltonian Colorings of Graphs 

Introduction 

 The concepts Radio k -colorings and radio k -

chromatic number of graphs were inspired by the so-

called channel assignment problem, where channels 

are assigned to FM radio stations according to the 

distances between the stations (and some other 

factors as well). Since Radio 1-chromatic number is 

the chromatic number χ(G), radio k -colorings 

provide a generalization of ordinary colorings of 

graphs. The radio d -chromatic number was studied 

in the previous chapter and was also called the radio-

number. Radio d -colorings are also referred to as 

radio labelings since no two vertices can be colored 

the same in a radio d -coloring. Thus, in a radio-

labeling of a connected graph of diameter d, 

thelabels (colors) assigned to adjacent vertices must 

differ by at least d, the labels assigned to two vertices 

whose distance is 2 must differ by at least d − 1, and 

so on, up to the vertices whose distance is d, that is, 

antipodal vertices, whose labels are only required to 

be different. A radio(d − 1) -coloring is less 

restrictive in that colors assigned to two vertices 

whose distance is i, where1 ≤ i ≤ d, are only required 

to differ by at least d − i. In particular , antipodal 

vertices can be colored the same. For this reason, 

radio (d − 1) - colorings are also called radio 

antipodal colorings or, more simply, antipodal 

colorings. Antipodal colorings of graphs were 

studied in the previous chapter, where rcd−1(G) was 

written as ac(G). Radio k -coloring of paths were 

studied in [6] for all possible values of k. In the case 

of an antipodal coloring of the path Pn of order n ≥ 3 

(and diameter n − 1 ), only the end-vertices of Pn are 

permitted to be colored the same since the only pair 
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of antipodal vertices in Pn are its twoend-vertices. Of 

course, the two end-vertices of Pn are connected by a 

hamiltonian path. As mentioned earlier, if u and v are 

any two distinct vertices of Pn and d(u, v) = i, then 

|c(u) − c(v)| ≥ n − 1 − i. Since Pn is a tree, not only is 

i the length of a shortest u − v path in Pn, it is the 

length of any u − v path in Pn since every two 

vertices are connected by a unique path. In 

particular, the length of a longest u − v path in Pn is i 

as well. For vertices u and v in a connected graph G, 

let D(u, v) denote the length of a longest u − v path 

in G. Thus for every connected graph G of order n 

and diameter d, both d(u, v) and D(u, v) are metrics 

on V(G). Radio k -colorings ofG are inspired by 

radio antipodal colorings c which are defined by the 

inequalityd(u, v) + |c(u) − c(v)| ≥ d. If G is a path, 

then d(u, v) + |c(u) − c(v)| ≥ d. is equivalent toD(u, 

v)+|c(u)−c(v)| ≥n− 1, which suggests an extension of 

the coloring c that satisfiesD(u, v)+ |c(u)−c(v)| ≥ n − 

1, for an arbitrary connected graph G. 

 

Definition Let G be a Connected Graph Of order n. 

1. A hamiltonian coloring c of G is an assignment 

of colors (positive integers) to the vertices of G 

such that D(u, v) + |c(u) − c(v)| ≥ n − 1, for 

every two distinct vertices u and v of G. In 

hamiltonian coloring of G, two vertices u and v 

can be assigned the same color only if G 

contains a hamiltonian u − v path. 

2. Thevalue hc(c) of a Hamiltonian coloring c of 

Gisthe maximum color assigned to a vertex of 

G. 

3. The hamiltonian chromatic number hc(G) of G 

is min {hc(c)} over all hamiltonian colorings c 

of G. 

4. A hamiltonian coloring c of G is a minimum 

hamiltonian coloringif hc(c) = hc(G). 

 Definition A graph G is hamiltonian-connected 

if for every pair u, v of distinct vertices of G, there is 

a hamiltonian u − v path. 

 

Consequently, we have the following fact: 

 Proposition Let G be a connected graph. Then 

hc(G) = 1 if and only if G is hamiltonian-connected. 

 In a certain sense, the hamiltonian chromatic 

number of a connected graph G measures how close 

G is to being hamiltonian-connected, the nearer the 

hamiltonian chromatic number of a connected graph 

G is to 1, the closer G is to being hamiltonian-

connected. 

 

Graphs with Equal Hamiltonian Chromatic 

Numbers and Antipodal Chromatic Numbers 

 Since the path Pn is the only graph G of order n 

for which diam G = n − 1, we have the following 

fact: 

 Proposition . If G is a path, then hc(G) = ac(G). 

 Earlier it was shown that ac(Pn) ≤ n−21 + 1 for 

every positive integer n . Moreover, it was shown in 

[6] that ac(Pn) ≤ n−21 − (n − 1)/2 + 4 for odd 

integers n ≥ 7. Therefore, we have the following 

corollary: 

Corollary . For every positive integer n, hc(Pn) ≤ 

n−21 + 1. Furthermore, for all odd integers n ≥ 7, 

hc(Pn) ≤ n−21 − n−21 + 4. 

 In order to see that the converse of Observation 

4.2.1 is false, we first consider the following 

lemmas. 

 Lemma. Let H be a hamiltonian graph of order n 

− 1 ≥ 3. If G is a graph obtained from H by adding a 

pendant edge, then hc(G) = n − 1. 

Proof . Let C : v1, v2, · · · , vn−1, v1 be a 

hamiltonian cycle of H and let v1vn be the pendant 

edge of G. Let c be a hamiltonian coloring of G. 

Since D(u, v) ≤ n − 2 for allu, v ∈ V(C), there is no 

pair of vertices in C that are colored the same by c. 

This implies that hc(c) ≥ n − 1 an d so hc(G) ≥ n − 1. 

Define a coloring c0 of G by c0(vi) = i for 1 ≤ i ≤ n − 

1 and c0(vn) = n − 1 (see Figure 4.1). We show that 

c0 is a hamiltonian coloring of G. 

 

 

(A hamiltonian coloring c0 of G ) 

 First consider two vertices vi and v j, where 1 ≤ i 

< j ≤ n − 1. Then|c0(vi)−c0(v j)|= j − i, while D(vi, v 
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j) ≥ n−1+i − j. Thus|c0(vi) − c0(v j)| + D(vi, v j) ≥ n 

− 1. Now consider the two vertices vi and vn, where 

1 ≤ i ≤ n−1. Then |c0(vi) − c0(vn)| = n − 1 − i, 

whileD(vi, vn) ≥ i. Hence |c0(vi) − c0(vn)| + D(vi, 

vn) ≥ n − 1. Therefore, c0 is a hamiltonian coloring 

of G and so hc(G) ≤ hc(c0) = n − 1. 

 For n ≥ 4, let Gn be the graph obtained from the 

complete graph Kn−1 by adding apendant edge. 

Then Gn has order n and diameter 2. Let V(Gn) = 

{v1, v2, ..., vn}, where degvn = 1 and vn−1vn ∈ 

E(G) . By Lemma 4.2.1, hc(Gn) = n − 1. We now 

show that ac(Gn) = hc(Gn) = n − 1. Let c be an 

antipodal coloring of Gn. Since diamGn = 2, it 

follows that the colors c(v1), c(v2), ..., c(vn−1) are 

distinct and so ac(Gn) ≥ n − 1. Moreover, the 

coloring c of Gn defined by c(vi) = i for 1 ≤ i ≤ n − 1, 

c(vn) = 1 is an antipodal coloring of Gn (see Figure 

4.2) and so ac(Gn) = n − 1. 

 

 

(An antipodal coloring cj of Gn ) 

  

 Hence there is an infinite class of graphs G of 

diameter 2 such thathc(G) = ac(G). We now show 

that there exists an infinite class of graphs G of 

diameter 3 such that hc(G) = ac(G). 

 Lemma 4.2.2. For n ≥ 5, let Hn be the graph 

obtained from the complete graph Kn−2, where 

V(Kn−2) = {v1, v2, · · · , vn−2}, by adding the two 

pendant edges v1vn−1 and vn−2vn. Then Hn is a 

graph of order n and diameter 3 such that hc(Hn) = 

ac(Hn) = 2n − 5. 

 Proof 4.2.2. Let c be a hamiltonian coloring of 

Hn. Since D(u, v) = n − 3 for all u, v ∈ V(Kn−2), the 

colors of every two vertices of Kn−2 must differ by 

at least 2, implying that hc(c) ≥ 2n − 5 and so hc(Hn) 

≥ 2n − 5. 

 

 

(A hamiltonian coloring c1 of Hn ) 

 

 Define a coloring c1 of Hn by c1(vi) = 2i − 1 for 

1 ≤ i ≤ n − 2, c1(vn−1) = 2n − 6, and c1(vn) = 2. (see 

Figure 4.3) We show that c1 is a hamiltonian 

coloring of Hn. For vertices vi and v j, where 1 ≤ i < 

j ≤ n − 2, it follows that |c1(vi) − c1(v j)| = (2 j − 1) − 

(2i − 1) = 2 j − 2i. Furthermore, D(vi, v j) = n − 3 

and so |c1(vi) − c1(v j)|+ D(vi, v j) = 2( j − i) + n − 3 

≥ 2 + n − 3 = n − 1. Next, we consider two vertices 

vi and vn−1, where 1 ≤ i ≤ n − 2. In this case, |c1(vi) 

− c1(vn−1)| = (2n − 6) − (2i − 1) = 2n − 2i − 5 if 1 ≤ 

i ≤ n − 3, while |c1(vn−2) − c1(vn−1)| = 1. 

Moreover, D(v1,vn−1) = 1 and D(vi,vn−1)= n − 2 

for2 ≤ i ≤ n − 2. Thus, for 1 ≤ i ≤ n − 3,|c1(vi) − 

c1(vn−1)| + D(vi, vn−1) ≥ (2n − 2i − 5) + (n − 2)= 3n 

− 2i − 7 ≥ n − 1;while |c1(vn−2) − c1(vn−1)| + 

D(vn−2, vn−1) = 1 + (n − 2) = n − 1. Similarly, 

c1(vi) − c1(vn)| + D(vi, vn) ≥ n − 1 for 1 ≤ i ≤ n − 1. 

Hence c1 is a hamiltonian coloring of Hn and so 

hc(Hn) ≤ hc(c1) = 2n − 5. Therefore, hc(Hn) = 2n − 

5. We now show that ac(Hn) = 2n − 5 as well. Let c 

be an antipodal coloring of Hn. Since diamHn = 3, it 

follows that the colors c(v1), c(v2), · · · , c(vn−2) 

differ by at least 2 and so ac(Hn) ≥ 2n − 5. Since the 

coloring c1 of Hn shown in Figure 4.3 is also an 

antipodal coloring of Hn,ac(Hn) ≤ 2n − 5 and so 

ac(Hn) = 2n − 5.  

 Whether there exists an infinite class of graphs 

G that are not paths, whose diameter exceeds 3 and 

for which hc(G) = ac(G), is not known. Indeed, it is 

not known if there is even one such graph that is not 

a path. 

Hamiltonian Chromatic Numbers of Some Special 

Class of Graphs 

 Since the complete graph Kn is hamiltonian-

connected, hc(Kn) = 1. We state this below for later 
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 

 

reference: 

Proposition .For n ≥ 1, hc(Kn) = 1. 

 We now consider the complete bipartite graphs 

Kr,s, beginning withKr,r. The graph Kr,r has order n 

= 2r and is hamiltonian but is not hamiltonian-

connected. For distinct vertices u and v of Kr,r,D(u, 

v) = n − 1 if uv∈ E(Kr,r) 

 Therefore, for a hamiltoniancoloringofKr,r, 

every two nonadjacent vertices must be colored 

differently (while adjacent vertices can be colored 

the same). This implies thathc(Kr,r) = χ(Kr,r) = r. 

We now determine hc(Kr,s) with r < s, beginning 

withr = 1. 

Theorem 4.3.1. For n ≥ 3, hc(K1,n−1) = (n − 2)2 + 1. 

 Proof 4.3.1. Since hc(K1,2) = 2, the result holds 

for n = 3. So we may assume that n ≥ 4. Let G = 

K1,n−1 with vertex set {v1, v2, · · · , vn}, where vn 

is the central vertex of G. Define a coloring c of G by 

c(vn) = 1 and c(vi) = (n − 1) + (i − 1)(n − 3) for 1 ≤ i 

≤ n − 1. Since c is a hamiltonian coloring, hc(G) ≤ 

hc(c) = c(vn−1) = (n − 1) + (n − 2)(n − 3) = (n − 2)2 

+ 1. 

 Next we show that hc(G) ≥ (n − 2)2 + 1. Let c be 

a minimum hamiltonian coloring of G. Since G 

contains no hamiltonian path, no two vertices can be 

colored the same.We may assume that c(v1) < c(v2) 

< · · · < c(vn−1). We consider three cases. 

 Case 1.c(vn) = 1. Since D(v1, vn) = 1 and D(vi, 

vi+1) = 2 for i with1 ≤ i ≤ n − 2, it follows that c(v1) 

≥ n − 1 and c(vi+1) ≥ c(vi) + (n − 3) for all 1 ≤ i ≤ n 

− 2. This implies that c(vn−1) ≥ (n − 1) +(n − 2)(n − 

3) = (n − 2)2 + 1. Therefore, hc(c) = hc(G) ≥ (n − 2)2 

+ 1. 

 Case 2.c(vn) = hc(c). Then 1 = c(v1) < c(v2) < · 

· · < c(vn−1) < c(vn). For each i with 2 ≤ i ≤ n − 1, it 

follows that c(vi) ≥ (n − 2) + (i − 2)(n − 3). In 

particular, c(vn−1) ≥ (n − 2) + (n − 3)(n − 3) = n2 − 

5n + 7. Thusc(vn) ≥ c(vn−1) + (n − 2) ≥(n2 − 5n + 7) 

+ (n − 2) = (n − 2)2 + 1. Therefore, hc(c) = hc(G) ≥ 

(n − 2)2 + 1. 

 Case 3.c(vj) < c(vn) < c(vj+1) for some j with 1 

≤ j ≤ n − 2. Thus 

c(vj) ≥ (n − 2) + ( j − 2)(n − 3), 

c(vn) ≥ c(vj) + (n − 2) = 2(n − 2) + ( j − 2)(n − 3), 

c(vj+1) ≥ c(vn) + (n − 2) ≥ 3(n − 2) + ( j − 2)(n − 3). 

 This implies that c(vn−1) ≥ 3(n − 2) + (n − 4)(n 

− 3) = n2 − 4n + 6 > (n − 2)2 + 1. Hence, hc(c) = 

hc(G) ≥ (n − 2)2 + 1.We now consider Kr,s, where 2 

≤ r < s, with partite sets V1 and V2 such that |V1| = r 

and |V2| = s. Then2r − 2 = n − s + r – 2if u, v ∈ V1, 

D(u, v) = 2r − 1 = n − s + r − 1 if uv ∈ 

E(K consequently, if c is a hamiltonian coloring of 

Kr,s (r < s),  

thenr,s) 2r=n−s+r ifu,v∈V.2 

 

|c(u) − c(v)| ≥ s − r if uv∈ E(K ),r,ss − r 

− 1 if u, v ∈ V2. 

 

Theorem 4.3.2. For integers r and s with 2 ≤ r < s, 

hc(Kr,s) = (s − 1)2 − (r − 1)2. 

 Proof 4.3.2. Let V1 = {u1, u2, · · · , ur} and V2 

= {v1, v2, · · · , vs} be the partite sets of Kr,s. Define 

a coloring c of Kr,s by c(ui) = 1 + (i − 1)(s − r + 1) 

for 1 ≤ i ≤ r − 1, c(vj) = c(ur−1) + (s − r) + ( j − 1)(s 

− r − 1) = (r − 1)(s − r + 1) + ( j − 1)(s − r − 1) for 1 

≤ j ≤ s, and c(ur) = c(vs) + (s − r) = (s − 1)2 − (r − 

1)2. Since c is a hamiltonian coloring of Kr,s, it 

follows that hc(Kr,s) ≤ hc(c) ≤ (s − 1)2 − (r − 1)2. 

 A V2 -block of Kr,s is defined similarly. Let A1, 

A2, · · · , Ap (p ≥ 1) be the distinct V1 -blocks of 

Kr,s such that if wj ∈ Ai and wjj ∈ Aj, where 1 ≤ i < 

j ≤ p, then c(wj) < c(wjj). If p ≥ 2, then Kr,s contains 

V2 -blocks B1, B2, · · · , Bp−1 such that for each 

integer i (1 ≤ i ≤ p − 1) and for wj ∈ Ai, w ∈ Bi, wjj 

∈ Ai+1, it follows that c(wj) < c(w) < c(wjj). 

 The graph Kr,s may contain up to two additional 

V2 -blocks, namely, B0 and Bp such thatif y ∈ B0 

and yj ∈ A1, then c(y) < c(yj); while if z ∈ Ap and zj 

∈ Bp, then c(z) < c(zj). If p = 1, then at least one of 

B0 and B1 must exist. Hence Kr,s contains p V1 -

blocks and p − 1 + tV2 -blocks, where t ∈ {0, 1, 2}. 

Consequently, there are exactly (1) r − p distinct 

pairs wi, wi+1 of vertices, both of which belong to 

V1, (2) 2p − 2 + t distinct pairs {wi, wi+1} of 

vertices, exactly one of which belongs to V1, and (3) 

s − (p − 1 + t) distinct pairs {wi, wi+1} of vertices, 

both of which belong to V2. 

 Since (1) the colors of every two vertices wi and 

wi+1, both of which belong to V1, mustdiffer by at 

s−r+1 ifu,v∈V1, 
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least s − r + 1, (2) the colors of every two vertices wi 

and wi+1, exactly one of which belongs to V1, must 

differ by at least s − r, and (3) the colors of every two 

vertices wi and wi+1, both of which belong to V2, 

must differ by at least s − r − 1, it follows that 

c(wr+s) ≤ 1+(r− 

p)(s−r+1)+(2p−2+t)(s−r)+(s−(p−1+t))(s−r−1) = 

(s−1)2−(r−1)2+t.Since hc(Kr,s) ≤ (s − 1)2 − (r − 1)2 

and t ≥ 0, it follows that t = 0 and that hc(Kr,s)=(s − 

1)2−(r–1) 

 

 

(Hamiltonian colorings of C3, C4 and C5 ) 

 

 We now determine the hamiltonianchromatic 

number of each cycle Minimum hamiltonian 

colorings of the cycles Cn for n = 3, 4, 5 are shown 

in Figure 4.4. 

 Definition 4.3.1. For a hamiltonian coloring c of 

a connected graph G, a set S = {u, v} of distinct 

vertices of G is called a c -pair if c(u) = c(v). We also 

write c(S ) = c(u) = c(v). 

 Lemma 4.3.1. Let c be a minimum hamiltonian 

coloring of Cn, where n ≥ 4. 

a) If u, v is a c -pair, then u and v are adjacent. 

b) If S and S j are distinct c -pairs, then S ∩ S j = φ 

 and c(S ) ≠ c(S j). 

 Proof 4.3.3. If u and v are nonadjacent vertices 

of Cn, then D(u, v) < n − 1, implying that c(u) ≠ c(v) 

and so u and v are adjacent 

 To verify S ∩ S j = φ and c(S ) ≠ c(S j), let S = 

{u, v} and S j = uj, vj be distinct c -pairs. Assume 

that S ∩ S j ≠ φ or c(S ) = c(S j). If S ∩ S j ≠ φ, then 

we may assume that u ≠ uj and v = vj. This implies 

that c(u) = c(v) = c(vj) = c(uj) and therefore, {u, uj} 

is a c -pair as well. If c(S ) = c(S j), then {u, uj} is 

also a c -pair. By (a), ({u, uj, v}) = C3, which is a 

contradiction.  

Theorem 4.3.3. For n ≥ 3, hc(Cn) = n − 2. 

 Proof 4.3.4. Let Cn : v1, v2, · · · , vn, v1. Since 

hc(Cn) = n − 2 for n = 3, 4, 5, we may assume that n 

≥ 6. Define a coloring c of Cn by c(v1) = n−2, c(v2) 

= 1, and c(vi) = i−2 for 3 ≤ i ≤ n (see Figure 4.5). 

Since c is a hamiltonian coloring, hc(Cn) ≤ n − 2. 

 

 

(A hamiltonian coloring of Cn for n ≥ 6 ) 

 

 Next we show that hc(Cn) ≥ n−2. Let c be a 

minimum hamiltonian coloring of Cn and let q be the 

number of distinct c -pairs. Since hc(Cn) ≥ n−2, it 

follows that q ≥ 2. Denote these q c -pairs by S 1, S 

2, · · · , S q. By Lemma 4.3.1(b), for all i, j with 1 ≤ i 

≠ j ≤ q, we have S i T S j = φ. and c(S i) ≠ c(S j). If q 

= 2, then hc(c) ≥ n − 2; so we assume that q ≥ 3. 

Without loss of generality, we may assume that c(S 

1) < c(S 2) < · · · < c(S q). For each i with 1 ≤ i ≤ q − 

1, let Ai = {u ∈ V(G) : c(S i) < c(u) < c(S i+1)}. 

There exist nonnegative integers a1, a2, · · · , aq−1 

such that |Ai| = c(S i+1) − c(S i) − 1 − ai for each 

integer i (1 ≤ i ≤ q − 1). Define a = a1 + a2 + · · · + 

aq−1 and I = {i :ai = 0, where 1 ≤ i ≤ q − 1}. At most 

c(S 1) − 1 vertices of Cn are assigned a color less 

than c(S 1) and at most hc(c) − c(S q) vertices of Cn 

are assigned a color exceeding c(S q). Since alln 

vertices of Cn are assigned a color by c, it follows 

that 

 n ≤ (c(S 1) − 1) + |S 1| + |A1| + |S 2| + |A2| + · · 

 · + |Aq−1| + |S q| + (hc(c) − c(S q))qq−1 

 = (c(S 1) − 1) + (hc(c) − c(S q)) + X |si| + X 

 |Ai|i=1i=1q−1 

 = (c(S 1) − 1) + (hc(c) − c(S q)) + 2q + 

 X(c(si+1) − c(si) − 1 − ai) 

= hc(c) + q − a. 

 Since hc(c) ≤ n − 2, we get a ≤ q − 2. This 

implies that I ≠ φ. and so aj = 0 for some j with 1 ≤ j 

≤ q − 1 and j ∈ I. Let S j = {x, xj} and S j+1 = {y, 

yj}. By Lemma 4.3.1(a), xxj, yyj ∈ E(Cn). Then Cn 

− xxj − yyj consists of two nontrivial paths P1 and 

i=1 
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P2. Assume, without loss of generality, that x and y 

are the end-vertices of P1 and thus xj and yj are the 

end-vertices of P2. Since j ∈ I, there exists a vertex 

x1 of Cn such that c(x1) = c(S j) + 1. Since |c(x1) − 

c(x)| = 1 = |c(x1) − c(xj)|, we have D(x1, x) ≥ n − 2 

and D(x1, xj) ≤ n − 2. It follows that x1 is adjacent to 

either x or xj , say x. 

 Now, let n = 2k or n = 2k + 1 for some k ≥ 3, 

according to whether n is even or n is odd. We claim 

that c(S j+1) − c(S j) ≥ k − 1, for suppose that c(S 

j+1) − c(S j) ≤ k − 2. If c(S j) + 1 = c(S j+1), then y = 

x1. If c(S j) + 1 < c(S j+1), then let x2 be a vertex of 

Cn such that c(x2) = c(S j) + 2. Then D(x2, x1) ≥ n − 

2; while D(x2, x) ≥ n − 3, and D(x2, xj) ≥ n − 3. This 

implies that x2 is adjacent to x1. Continuing in this 

manner, we see that P1 has length c(S j+1)−c(S j) 

and its vertices are colored by c as shown in Figure 

4.6. It is clear that P2 has length n − 2 −(c(S j+1) − 

c(S j)). Since c(S j+1) − c(S j) ≤ k − 2, we get 

 D(xj, yj) = n−2−(c(S j+1)−c(S j)) . Thus 

|c(xj)−c(yj)|+ D(xj, yj) = n−2, which contradicts the 

fact that c is a hamiltonian coloring of Cn. Thus we 

have c(S j+1) − c(S j) ≥ k − 1, as claimed. 

 

 

(The coloring of P1 ) 

 Let y1 be a vertex such that c(y1) = c(S j+1) − 1. 

We see that y1 is adjacent to either yj or y. We claim 

that y1 is adjacent to y, for suppose that y1 is 

adjacent to yj. Then y1 belongs to P2. Recall that aj 

= 0. Since x1 belongs to P1 and the paths P1 and P2 

have no common vertex, there exist vertices x∗ and 

y∗ of Cn such that c(x1) ≤ c(x∗), c(x∗)+1 = 

c(y∗)c(y1) and that x∗ ∈ P1 and y∗ ∈ P2. Hence 

D(x∗, y∗) ≤ n−3, a contradiction. Thus y1 is adjacent 

to y. 

 We can therefore find vertices x2, · · · , xk−2 of 

Cn such that c(x2) = c(S j) + i for i = 2, · · · , k − 2 

and Px : x, x1, x2, · · · , xk−2 is a sub path of P1. 

Similarly, we can find vertices y2, · · · , yk−2 of Cn 

such that c(y2) = c(S j+1) − i for i = 2, · · · , k − 2 

and that Py : yk2 , · · · , y2, y1, y is a sub path of P1. 

We claim that Px and Py are not vertex-disjoint, for 

suppose that they are. Then since q ≥ 3, it follows 

that n ≥ 2k + 2, a contradiction. Thus Px and Py have 

a common vertex. This implies that the path P1 

contains exactly one vertex colored i for each i with 

c(S j) ≤ i ≤ c(S j+1) and has no vertices of any other 

color (see Figure.4.6 for the coloring of the vertices 

of P1 ). Therefore, the length of P1 is c(S j+1) − c(S 

j) and the length of P2 is n − 2 − (c(S j+1) − c(S j)). 

 

 

(Graphs of order n(3 ≤ n ≤ 5) having hamiltonian 

chromatic number 2) 

 

 Recall that c(S j+1) − c(S j) ≥ k − 1. If, in 

addition, l ∈ I, where l ≠ j, then, as above, c(S l+1) − 

c(S l) ≥ k − 1 and there is a path Q1 of length c(S 

l+1) − c(S l) whose vertices are colored by c(S l), c(S 

l) + 1, · · · , c(S l+1) and where necessarily, Q1 is a 

proper sub path of P2. Assume, without loss of 

generality, that l > j. Let S l = {z, zj} and S l+1 = {w, 

wj}. Then the sets S j, S j+1, S l, S l+1 are distinct 

except possibly S j+1 = S l. Since Cn − xxj − yyj − 

zzj − wwj consists of at least three nontrivial paths, 

the lengths of at least two of which, namely P1 and 

Q1, are at least k − 1, it follows that Cn has at least 

2(k − 1) + 4 = 2k + 2 edges, which is impossible. 

Thus I = { j}. Recall that a ≤ q − 2. Since |I| = 1, it 

follows that a ≥ q − 2. Hence a = q − 2. Since n ≤ 

hc(Cn) + q − a, we have n ≤ hc(c) + 2.So hc(c) ≥ n − 

2, as desired. 

 

Hamiltonian Chromatic Numbers of Graphs 

Having given Orders 

 In this section we shall assume that we are 

considering connected graphs of order n for some 

fixed integer n ≥ 3. We have already mentioned that 

a graph G has hamiltonian chromatic number 1 if and 

only if G is hamiltonian-connected. We now show 

that it is possible for a graph G to have hamiltonian 

chromatic number 2. All the graphs (of orders 3 to 5) 
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shown in Figure 4.7 have hamiltonian chromatic 

number 2. 

 The graphs G2 and G4 (or G3 and G5 ) are 

actually special cases of a more generalclass of 

graphs. For n ≥ 4, let G2n−6 be the graph of order n 

obtained by joiningtwo vertices u and v of Kn−1 to a 

new vertex w and let G2n−5 = G2n−6 − uv. Then 

hc(G2n−6) = hc(G2n−5) = 2 for all n ≥ 4. We also 

have other graphs of order n with hamiltonian 

chromatic number 2 if n is sufficiently large. The 

graphs H1 and H2 of have hamiltonian chromatic 

number 2. 

 

 

(other graphs with hamiltonian chromatic 

number 2) 

 

 In general, for n = 3k ≥ 6, let Hk−1 be the graph 

obtained from K2k, where V(K2k) = {u1, v1, u2, v2, 

· · · , uk, vk}, by adding the k new vertices w1, w2, · 

· · , wk and joining wi to ui and vi for 1 ≤ i ≤ k. Then 

hc(Hk−1) = 2 for all k ≥ 2. A hamiltonian coloring of 

Hk−1 assigns 1 to ui and wi and 2 to vi for all i(1 ≤ i 

≤ k). This class of examples shows that there exists a 

graph G with hc(G) = 2 such that each of the two 

colors is used an arbitrarily large number of times in 

a minimum hamiltonian coloring of G. Other graphs 

with hamiltonian chromatic number 2 can be 

obtained from Hk−1 by deleting any or all of the 

edges uivi(1 ≤ i ≤ k). The constructions described 

above for producingclasses of graphs with 

hamiltonian chromatic number 2 can be altered to 

produce graphs (indeed, hamiltonian graphs) with 

larger hamiltonian chromatic numbers. Let k and n 

be integers with n ≥ 2k ≥ 4 and let Fk be the graph of 

order n obtained by identifying an edge of Kn−k+1 

and an edge of Kk+1. Denote the identified edge by 

uv. Since n ≥ 2k, it follows that n − k + 1 ≥ k + 1. 

Furthermore, D(u, v) = n − k. The coloring c that 

assigns 1 to every vertex of Fk except v and assigns 

k to v is a hamiltonian coloring of Fk. Since |c(u) − 

c(v)| + D(u, v) = (k − 1) + (n − k) = n − 1, it follows 

that c is, in fact, a minimum hamiltonian coloring of 

Fk and so hc(Fk) = k. Of course, hc(Fk − uv) = k as 

well. This gives us the following result: 

 Theorem 4.4.1. For every two integers k and n, 

where 1 ≤ k ≤ bn/2], there exists a hamiltonian graph 

G of order n with hc(G) = k. 

 Theorem 4.4.1 can be extended however. First, 

the following lemma will be useful. 

 Lemma 4.4.1. Let G be a connected graph of 

order n and H an induced subgraph of order k in G. If 

DH(u, v) ≥ DG(u, v) − (n − k) for every two distinct 

vertices u and v of H, then hc(H) ≤ hc(G). 

 Proof 4.4.1. Let c be a minimum hamiltonian 

coloring of G and cj the restriction of c to H. Let u, v 

∈ V(H). Since DH(u, v) ≥ DG(u, v) − (n − k), it 

follows that 

 |cj(u) − cj(v)| + DH(u, v) ≥ |c(u) − c(v)| + DG(u, 

 v) − (n − k) 

 ≥ (n − 1) − (n − k) = k − 1. 

 Thus cj is a hamiltonian coloring of H an d so 

hc(H) ≤ hc(cj) ≤ hc(c) = hc(G). 

 Theorem 4.4.2. Let j and n be integers with 2 ≤ j 

≤ (n + 1)/2 and n ≥ 6. Then there is a hamiltonian 

graph of order n with hamiltonian chromatic number 

n − j. 

 Proof 4.4.2. Let G = G(n, j) be the graph 

consisting of the cycle Cn : v1, v2, · · · , vn, v1 

together with all edges joining vertices in {v1, v2, · · 

· , v j−1, vn}. If j = 2, then G = G(n, 2) = Cn. Since 

hc(Cn) = n − 2, we can assume that j ≥ 3. Define a 

coloring c∗ of V(G) by 

 

 

(A hamiltonian coloring c∗ of G ) 

http://www.shanlaxjournals.com/


SHANLAX  
International Journal of Arts, Science and Humanities 

 

 
http://www.shanlaxjournals.com  64 

 The graph G together with the coloring c. is 

shown in Figure 4.9. It is straightforward to show 

that c∗ is a hamiltonian coloring. Thus hc(G) ≤ 

hc(c∗) = n − j. Next we show that hc(G) ≥ n − j. Let 

 H = ({vj−1, v j, v j+1, · · · ,vn}) = Cn− j+2. 

Thus hc(H) = n − j by Theorem 4.3.3. With k = n − j 

+ 2, we see that G and H satisfy the conditions in 

Lemma 4.4.1. It then follows that n − j = hc(H) ≤ 

hc(G), completing the proof.□ 

 Combining Theorem 4.4.1 and Theorem 4.4.2, 

we have the following corollary: 

 Corollary 4.4.1. For every two integers k and n 

with 1 ≤ k ≤ n−2, there is a hamiltonian graph of 

order n with hamiltonian chromatic number k. 

 We now know that for every integer n ≥ 3, there 

exists a graph G of order n with a certain specified 

hamiltonian chromatic number. But how large can 

the hamiltonian chromatic number of a graph of 

order n be? In order to answer this question, we 

present an upper bound for the hamiltonian 

chromatic number of a graph in terms of its order. 

We begin with an observation. Let G be a connected 

graph containing an edge e such that G −e is 

connected. For every two distinct vertices u and v in 

G −e, the length of a longest u − v path in G does not 

exceed the length of a longest u − v path in G − e 

Thus every hamiltonian coloring of G − e is a 

hamiltonian coloring of G. This observation yields 

the following lemma.: 

 Lemma If e is an edge of a connected graph G 

such that G − e is connected, then hc(G) ≤ hc(G − e). 

 

Combining Theorem 4.3.3 and Lemma 4.4.2, we 

have the following theorem: 

 Theorem . If G is a hamiltonian graph of order n 

≥ 3, then hc(G) ≤ n − 2. Definition 4.4.1. The length 

of a longest cycle in a connected graph is called the 

circumference of G and is denoted by cir(G). 

Theorem . If G is a connected graph of order n ≥ 4 

with cir (G) = n − 1, then hc(G) ≤ n − 1. 

Proof . Since G is connected and cir (G) = n − 1, it 

follows that G contains a spanning subgraph H 

obtained by adding a pendant edge to a cycle of 

length n − 1. By Lemma 4.2.1, hc(H) = n − 1, and by 

Lemma 4.4.2, hc(G) ≤ n − 1. 

 

 Indeed, by Corollary 4.4.1, every pair k, n of 

integers with 1 ≤ k ≤ n − 2 can be realized as the 

hamiltonian chromatic number and the order of some 

hamiltonian graph. Consequently, this result cannot 

be improved. Lemma 4.4.2 also provides the 

following result: 

Theorem.If T is a spanning tree of a connected 

graph G, then hc(G) ≤ hc(T ). Definition . The 

complement G of a graph G is the graph with vertex 

set V(G) such that two vertices are adjacent in G if 

and only if they are not adjacent in G. 

 Lemma .If T is a tree of order at least 4, that is 

not a star, then T contains a hamiltonian path. 

 Proof . We proceed by induction on the order n 

of T. For n = 4, the path P4 of order 4 is the only tree 

of order 4 that is not a star. SinceP¯4 = P4, the result 

holds for n = 4. Assume that for every tree of order k 

− 1 ≥ 4 that is not a star, its complement contains a 

hamiltonian path. Now let T be a tree of order k that 

is not a star. Then T contains an end-vertex v such 

that T − v is not a star. By the induction hypothesis, 

T − v contains a hamiltonian path, say v1, v2, · · · , 

vk−1. Since v is an end-vertex of T, it follows that v 

is adjacent to at most one of v1 and vk−1. Without 

loss of generality, assume that v1 and v are not 

adjacent in T. Then v and v1 are adjacent in T and so 

v, v1, v2, · · · , vk−1 is a hamiltonian path in T . 

 Theorem . If T is a tree of order n ≤ 2, then hc(T 

) ≤ (n − 2)2 + 1. 

Proof 4.4.5. If T is a star, then by Theorem 

4.3.1, hc(T ) = (n − 2)2 + 1 and the result holds. So 

we may assume that T is a tree of order n ≥ 4 that is 

not a star. By Lemma 4.4.3, the complement T of T 

contains a hamiltonian path, say v1, v2, · · · ,vn is a 

hamiltonian path in T . This implies that for each i 

with 1 ≤ i ≤ n, the vertices vi and vi+1 are 

nonadjacent in T. Thus D(vi, vi+1) ≥ 2 for all i with 

1 ≤ i ≤ n − 1. Define a labeling c of T by c(vi) = (n − 

2) + (i − 2)(n − 3) for each i with 1 ≤ i ≤ n. Let 1 ≤ i 

< j ≤ n. Then |c(vi) − c(vj)| = ( j − i)(n − 3). If j = i + 

1, then |c(vi) − c(vj)| + D(vi, v j) ≥ (n − 3) + 2 = n − 1. 

 If j ≥ i + 2, then |c(vi) − c(vj)| + D(vi, v j) ≥ 2(n 

− 3) + 1 = 2n − 5 ≥ n − 1 for n ≥ 4. Thus c is a 

hamiltonian coloring of T. Therefore, hc(T ) ≤ hc(c) 

= c(vn) = (n − 2)2 < (n − 2)2 + 1, as desired. 
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 As a consequence of Theorems 4.4.5 and 4.4.6, 

we obtain a sharp upper bound for the hamiltonian 

chromatic number of a nontrivial connected graph in 

terms of its order. 

 Corollary 4.4.2. If G is a nontrivial connected 

graph of order n, then hc(G) ≤ (n−2)2+1. 

The preceding results suggest defining the 

following set and parameter for each integer n ≥ 2, 

HC(n) = {k : there exists a graph G of order n with 

hc(G) = k}. Therefore, min{HC(n)} = 1 and 

max{HC(n)} = (n − 2)2 + 1. Also, hc(n) = max{k : p 

∈ HC(n) for all  

 

(Graphs Ii of order 4 with hc(Ii) = i (1 ≤ i ≤ 5)) 

 

 1 ≤ p ≤ k}. By Theorem 4.4.4, Theorem 4.3.1, 

Corollaries 4.4.1, and 4.4.2, it follows thatn − 1 ≤ 

hc(n) ≤ (n − 2)2 + 1. That HC(4) = {1, 2, 3, 4, 5} and 

HC(5) ={1, 2, · · · , 10} − {9} is illustrated in 

Figures 4.10 and 4.11 Consequently, hc(4) = 5 

andhc(5) = 8. Among the many unsolved problems is 

to determine those integers n ≥ 2 for which n ∈ 

HC(n). 

 

(Graphs Ji of order 5 with hc(Ji) = 

 i (1 ≤ i ≤ 10, i ≠ 9) ) 
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