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 Graphs in  this chapter are simple. Terms here are used in the 

sense of Harary. The SML was focused as assignment of label to the 

vertices x  V with distinct elements f(x) from1, 2, . . . , p in such a 

way that when the edge e = uv islabeled with 
f (α) + f(β)

2
iff(α) + f(β) is 

even and 
f α + f β +1

2
 if f(α) + f(β) is odd then the resulting edges get 

distinct labels from the set {2, 3, . . . , p} . In [2], we proved that if 

n1n2<n3, the three star𝐾1 ,𝑛1
∪ 𝐾1 ,𝑛2

∪ 𝐾1 ,𝑛3
is a SMGif |n2 – n3| = 4 + 

n1 for n1, n2, n3 are positive integers;also,n1n2<n3, the three star𝐾𝑛1
∪

𝐾𝑛2
∪ 𝐾𝑛3

is not aSMG if |n2 – n3| > 4 + n1 for n1, n2, n3 are positive 

integers.; the graph 𝐾1,𝑛1
∪ 𝐾1,𝑛1

∪ 𝐾1,𝑛2
∪ 𝐾1,𝑛3

is a SMG if |n2 – n3| = 

4 + n1 for n1= 2, 3, 4, . . .; n2 = 2,3,4, . . . ; n3 = 2n1 + n2 + 4 and 

n1n2<n3; the graph𝐾1,𝑛1
∪ 𝐾1,𝑛1

∪ 𝐾1,𝑛2
∪ 𝐾1,𝑛3

is not a SMG if |n2 – 

n3| > 4 + n1 for n1 = 2, 3, 4, . . .; n2 = 2,3,4, . . .;n3 = 2n1 + n2 + 5 and 

n1n2<n3; the four star 𝐾1,1 ∪ 𝐾1,1 ∪ 𝐾1,𝑛2
∪ 𝐾1,𝑛3

 is a SMG if |n2 – n3| 

= 7 forn2 = 1,2,3, . . .; n3 = n2 + 7 and 1n2<n3 and the four star 

𝐾1,1 ∪ 𝐾1 ,1 ∪ 𝐾1 ,𝑛2
∪ 𝐾1 ,𝑛3

 is not a SMG if |n2 –  n3| > 7 forn2 = 1,2,3, . 

. .; n3n2 + 8 and1 n2<n3. In [3], the condition for a graph to be 

skolem mean is that p  q + 1. 

 

Definition: Graph  

A graph G = (V(G), E(G)), consists of two finite sets, V(G), the vertex 

set of the graph, often denoted by just V, which is non-empty sets of 

elementscalled vertices, E(G), the edges set of the graph, often 

denoted by just E, which is possibly an empty set of element called 

edges. 
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A graph G with five vertices and seven edges. 

 V(G) = {V1, V2 , V3, V4, V5 ,} 

 E(G) = {e1, e2, e3, e4, e5, e6, e7,} 

 

Definition: Empty Graph 

 An empty graph is graph with no edges. 

 

 In the graph empty graph with two vertices. 

 

Definition 

 A graph G = (V, E) with p vertices and q edges 

is said to be a SMG if there exists a function f from 

the vertex set of G to {1, 2, . . . , p} such that the 

induced map f* from the edge set of G to {2, 3, . . . , 

p} defined by  

f* ( e = αβ) =  
𝑓 ∝ +𝑓(𝛽)

2
  if f(α) + f(β) is even 

   
𝑓 ∝ +𝑓 𝛽 +1

2
if f(α) + f(β) is odd, 

 

the resulting edges get distinct labels from the set {2, 

3, . . . , p}.  

 

Some Resuℓts on Skolem Mean Graphs  

 In this chapter, we prove that the three stars 

K1,ℓ  K1,p  K1,q is a skolem mean graph if and  

onℓy if | pq | ≤ 4 + ℓ where ℓ = 1,2,3,…. And the 

four stars K1,ℓ  K1,ℓ  K1,p  K1,q is a skolem 

mean graph if and onℓy if | pq | ≤ 4 + 2ℓ where ℓ = 

2,3,4… . A lso, we prove that the five stars K1,ℓ   

k1,ℓ  k1,ℓ  k1,p   k1,q is a sko lem mean graph if 

and onℓy if | pq | ≤ 4 + 3ℓ where ℓ =2,3,4,… . 

Finally we g ive the conjecture that the t stars t (k1,ℓ ) 

 k1,p  k1,q is a sko lem mean graph if and only if | 

pq | ≤ 4 + tℓ where t =1,2,3,4… .  

 

Theorem 

 K1,ℓ  K1,p K1,q is a skolem mean graph if | 

pq | ≤ 4+ℓ where ℓ = 1, 2, 3, .... .  

 PROOF : Consider the graph K1,ℓ  K1,p   

K1,q = K1, ℓ  K1, (ℓ, ℓ +1 , ℓ +2 , ℓ +3 , ....)  K1, 

( 2ℓ +4 , 2ℓ +5 , 2ℓ +6 , ...) where p = ℓ, ℓ +1, ℓ +2, ℓ 

+3, .... , q = 2ℓ +4, 2ℓ +5, 2ℓ +6,... and ℓ = 1, 2, 3, ... 

. K1,ℓ   K1,p  K1,q = K1,ℓ  K1, ℓ +t-1   K1, 2ℓ 

+ t + 3 where ℓ = 1, 2, 3, ... and t = 1, 2, 3, .... .  

Case 1: Let ℓ = t = m.  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m 

 K1, 2m-1   K1, 3m+3 . let {u}, 

 { ui:1 ≤ i ≤ m }, { v }, { vj:1 ≤ j ≤ 2m -1 } and { 

w }, { wk:1 ≤ k ≤ 3m + 3 } be the vertices of K1,m , 

K1,2m  1 and K1,3m + 3 respectively. Then K1,m 

 K1,2m1  K1,3m + 3 has 6m + 5 vert ices and 

6m + 2 edges. 

 Define f: V (K1,m  K1,2m1  K1,3m+3)   

{1, 2, 3, ..., 6m+5} by f ( w ) = 6m + 4, f ( wk ) = 2k, 

1 ≤ k ≤ 3m + 1 and f ( w3m+2 ) = 6m + 3, f ( w3m+3 

) = 6m + 5. f ( v ) = 3, f ( v j ) = 2m + 2j + 3, 1 ≤ j ≤ 

2m  1 and f ( u ) = 1, f( ui ) = m + 2i 1, 1 ≤ i ≤ m. 

The edge label of wwk is 3m + k + 2, 1 ≤ k ≤ 3m + 

1, 6m + 4 and 6m + 5. The edge label of vvj is m + j 

+ 3,1 ≤ j ≤ 2m 1 and the edge label of uui is 2

i2m 

, 

1 ≤ i ≤ m. 

 Hence the induced edge labels are 6m+2 distinct 

edges. 

 The Skolem mean labeling of K1, m  K1, 

2m1  K1, 3m+3 are illustrated in  Fig.2.0, Fig.2.1 

and Fig.2.2 respectively. 

 Consider the graph G = K1,4  K1,7  K1,15 

where m = 4.  

 Then | v | = p = 29 and | E | = q = 26.  
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K1,7 

 

 

K1,4 

 

 Therefore, all the edge labels are distinct in the 

graph. 

 Therefore, the graph G = K1, 4 K1, 7 K1, 15 is a 

skolem mean graph. 

 Hence the graph K1, m K1, 2m1 K1, 3m+3 is a  

skolem mean graph. 

 

Case 2: let ℓ = t = m+1.  

 Consider the graph K1, ℓ K1, p  K1, q = K1, m+1   

K1, 2m+1  K1, 3m+6. let {u}, { ui:1 ≤ i ≤ m +1 }, { v  },{ 

vj:1 ≤ j ≤ 2m + 1 } and {w}, {wk : 1 ≤ k ≤ 3m +6 } be 

the vertices of K1,m+1 , K1,2m+1 and K1,3m+6 

respectively.Then K1, m+1 K1, 2m+1  K1, 3m+6 has 6m 

+ 11 vertices and 6m +8 edges. 

 Definef: V( K1,m+1  K1,2m+1 K1,3m+6 )  { 1, 2, 

3, ..., 6m + 11 } by f( w ) = 6m + 10, f( wk ) = 2k, 1 ≤ 

k ≤ 3m + 4 and f( w3m+5 ) = 6m + 9, f(w3m+6) = 

6m+11. f(v) = 3, f( vj ) = 2m + 2j + 5, 1 ≤ j ≤ 2m +1 

and f( u ) = 1, f( ui ) = m + 2i 1, 1 ≤ i ≤ m +1. The 

edge label of wwk is 3m +k +5,1 ≤ k ≤ 3m+4, 6m + 

10 and 6m + 11. The edge label of vv j is m + j+4, 1 ≤ 

j ≤ 2m+ 1 and the edge label of uui is 
2

i2m  , 1 ≤ i ≤ 

m + 1. 

 Hence the induced edge labels are 6m + 8 

distinct edges. 

 The Skolem mean labeling of K1, m+1 K1, 2m+1 

K1, 3m+6 are illustrated in Fig.2.3, Fig.2.4 and Fig.2.5 

respectively. 

Consider the graph G = K1,5 K1,9 K1,18 where 

m = 4.  

 Then | V | = p = 35 and | E | = q = 32.  

 

 

 K1,18 

 

 

K1,9 

 

K1,5 

 

 Therefore, aℓℓ the edge labels are distinct in the 

graph. 
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 Therefore, the graph G = K1,5 K1,9 K1,18 is a 

skolem mean graph. 

 Hence the graph K1,m+1 K1,2m+1 K1,3m+6 is a 

skolem mean graph. 

 

Case 3: let ℓ = t = m + 2.  

 Consider the graph K1,ℓ K1, p  K1,q = K1, m+2  

K1, 2m+3  K1, 3m+9.let {u}, { ui: 1 ≤ i ≤ m + 2 }, { v }, 

{ vj: 1 ≤ j ≤ 2m + 3 } and { w }, { wk: 1 ≤ k ≤ 3m+9 

} be the vertices of K1,m+2, K1, 2m+3 and K1, 3m+9 

respectively. Then K1, m+2 K1, 2m+3  K1, 3m+9 has 

6m+17 vert ices and 6m + 14 edges. 

 Define f: V ( K1, m+2  K1, 2m+3  K1, 3m+9)  {1, 

2, 3, ..., 6m+17} byf ( w ) = 6m +16, f( wk ) = 2k, 1 ≤ 

k ≤ 3m + 7 and f ( w3m+8 ) = 6m + 15,f ( w3m+9 ) = 6m 

+ 17. f ( v ) = 3, f ( v j ) = 2m + 2j + 7, 1 ≤ j ≤ 2m + 3 

and f ( u ) = 1, f ( ui ) = m + 2i  1, 1 ≤ i ≤ m + 2. The 

edge label of wwk is 3m + k + 8, 1 ≤ k ≤ 3m + 7, 6m 

+ 16 and 6m + 17. The edge label of vv j is m + j + 5, 

1 ≤ j ≤ 2m + 3 and the edge label of uui is 
2

i2m  , 1 

≤ i ≤ m + 2.  

 Hence the induced edge labels are 6m + 14 

distinct edges. 

 The Skolem mean labeling of K1,m+2 K1,2m+3 

K1,3m+9 are illustrated in Fig.3.6, Fig.3.7 and Fig.3.8 

respectively. 

 Consider the graph G = K1,6 K1,11 K1,21 

where m = 4.  

 Then | v | = p = 41 and | E | = q = 38.  

  

 

K1,21 

 

K1,11  

 

 

K1,6  

 

 Therefore, all the edge labels are distinct in the 

graph.Therefore, the graph G = K1,6 K1,11 K1,21 is 

a skolem mean graph.Hence the graph K1,m+2  

K1,2m+3 K1,3m+9 is a skolem mean graph.  

 

Case 4: let ℓ = t = m + 3.  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m+3  

K1,2m+5  K1,3m+12. let {u}, {ui:1≤ i ≤ m + 3},{ v }, 

{vj:1 ≤ j ≤ 2m + 5} and {w}, {wk: 1≤ k ≤ 3m +12} 

be the vertices of K1,m+3 , K1,2m+5 and K1,3m+12 

respectively.Then K1, m+3 K1,2m+5  K1,3m+12 has 

6m+23 vert ices and 6m+20 edges. 

 Define f: V ( K1,m+3  K1,2m+5 K1,3m+12 )  { 1, 

2, 3, ..., 6m + 23 } byf( w ) = 6m + 22, f ( wk ) = 2k, 

1 ≤ k ≤ 3m + 10 and f ( w3m+11 ) = 6m + 21,f ( w3m+12 

) = 6m + 23. f ( v ) = 3, f ( v j ) = 2m + 2j + 9, 1 ≤ j ≤ 

2m + 5 and f ( u ) = 1, f ( u i ) = m + 2i  1, 1 ≤ i ≤ m 

+ 3. The edge label of wwk is3m + k + 11, 1 ≤ k ≤ 

3m + 10, 6m + 22 and 6m + 23. The edge label o f vv j 
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ism + j+ 6, 1 ≤ j ≤ 2m + 5 and the edge label of uu i is 

2

i2m  , 1 ≤ i ≤ m + 3. 

 Hence the induced edge labels are 6m+20 

distinct edges. 

 The Skolem mean labeling of K1,m+3 K1,2m+5 

K1,3m+12 are illustrated in Fig.3.9, Fig.3.10 and  

Fig.3.11 respectively. 

 Consider the graph G = K1,7 K1,13 K1,24 

where m = 4.  

 Then | v | = p = 47 and | E | = q = 44.  

 

K1,24 

 

 

K1,13 

 

 

K1,7 

 Therefore, all the edge labels are distinct in the 

graph. Therefore, the graph G = K1,7 K1,13 K1,24 is 

a skolem mean graph. Hence the graph K1,m+3 

K1,2m+5 K1,3m+12 is a skolem mean graph. 

 

Case 5: let ℓ = t = m + r.  

 Consider the graph K1,ℓ  K1, p  K1, q = K1, m+r  

K1, 2m+2r1  K1, 3m+3r+3 Where r = 0, 1, 2, 3,... let {u} , 

{ui:1≤i ≤ m+r}, {v}, {vj: 1≤j ≤2m + 2r  1} and { w 

}, { wk: 1≤ k ≤ 3m + 3r + 3 } be the vertices of K1,m+r  

, K1,2m+2r1 and K1,3m+3r+3 respectively. Then K1, m+r  

K1, 2m+2r 1  K1, 3m+3r+3 has 6m + 6r + 5 vertices and 

6m + 6r + 2 edges. 

 Definef: V ( K1,m+r   K1,2m+2r 1 K1,3m+3r+3 )  { 

1, 2, 3, ..., 6m + 6r + 5 } by f ( w ) = 6m + 6r + 4, f ( 

wk ) = 2k, 1≤k≤3m + 3r + 1 and f ( w3m+3r+2 ) = 6m + 

6r + 3, f ( w3m+3r+3 ) = 6m + 6r + 5 f ( v ) = 3, f ( v j ) = 

2m + 2j + 2r + 3, 1≤j ≤ 2m + 2r  1 and f ( u ) = 1, f ( 

ui ) = m + 2i  1, 1≤i ≤m + r . The edge label of wwk 

is 3m + 3r + k + 2, 1 ≤ k ≤ 3m + 3r + 1, 6m + 6r + 4 

and 6m + 6r + 5. The edge label of vv j is m + j + r + 

3, 1 ≤ j ≤ 2m + 2r  1 and the edge label of uui is 

2

i2m  , 1 ≤ i ≤ m + r . Hence the induced edge labels 

are 6m + 6r + 2 distinct edges. Conversely, suppose 

that K1,ℓ K1,p K1,q is a skolem mean graph if | pq 

| > 4 + ℓ Where ℓ = 1, 2, 3, … . 

 Consider the graph K1,ℓ K1,p K1,q = K 1,ℓ  K1, 

(ℓ , ℓ +1, ℓ +2, ℓ +3, ... .)  K 1, (2ℓ+5, 2ℓ+6, 2ℓ+7,...) where p = ℓ , ℓ 

+1, ℓ +2,ℓ +3, … ,q = 2ℓ +5, 2ℓ +6, 2ℓ +7, ... and ℓ = 

1, 2, 3,… . K1,ℓ K1,p K1,q = K1,ℓ K1,ℓ + t 1 K1, 2ℓ+ 

t + 4 where ℓ= 1, 2, 3, ... and t = 1, 2, 3 ... . 

 

Case 6: let ℓ = t = m .  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m  

K1,2m1  K1,3m+4. let { u }, { ui: 1≤ i ≤ m }, { v }, { 

vj: 1 ≤ j ≤ 2m  1 } and { w }, { wk: 1≤ k ≤ 3m + 4 } 

be the vertices of K1,m , K1,2m1 and K1,3m+4 

respectively. Then K1,m K1,2m1  K1,3m+4 has 6m + 

6 vertices and 6m + 3 edges. 

 Define f: V (K1,m  K1,2m1  K1,3m+4)  {1, 2, 

3, ..., 6m+6} by f ( w ) = 6m + 5, f( wk ) = 2k1, 1 ≤ 

k ≤ 3m + 2 and f(w3m+3) = 6m + 4, f ( w3m+4 ) = 6m + 

6. f ( v ) = 4, f ( vj ) = 2m + 2j + 4, 1 ≤ j ≤ 2m  1 and  

f ( u ) = 2, f ( ui ) = m + 2i,1 ≤ i ≤ m. The edge label 

of wwk is 3m + k + 2, 1≤ k ≤ 3m + 2,6m + 5 and 6m 
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+ 6. The edge label of vvj is m + j + 4, 1≤ j ≤ 2m  1 

and the edge label of uu i is 
2

2i2m  , 1≤ i ≤ m . 

 Hence the induced edge labels 6m + 3 are not 

receiving distinct edges.The Skolem mean labeling  

of K1,m K1,2m1 K1,3m+4 are illustrated in Fig.2.12, 

Fig.2.13 and Fig.2.14 respectively. 

 Consider the graph G = K1,4 K1,7 K1,16 where 

m = 4.  

 Then | V | = p= 30 and | E | = q = 27.  

 

 

K1,16 

 

K1,7 

 

K1,4 

 

 Therefore, the edge label of ( 29,1 ) is 15 in K1,16 

and the edge label of ( 4,26 ) is 15 in K1,7. 

 Therefore, the two edge labels are same in the 

graph. 

 Therefore, the edge labels are not distinct in the 

graph.  

 Therefore, the graph G = K1,4 K1,7 K1,16 is 

not a skolem mean graph. 

 Hence the graph K1,m K1,2m1 K1,3m+4 is not a 

skolem mean graph. 

 

Case 7: let ℓ = t = m+1.  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m+1  

K1,2m+1  K1,3m+7 . let { u }, { ui: 1≤ i ≤ m + 1 }, {v}, 

{ vj: 1 ≤ j ≤ 2m + 1 } and {w}, {wk: 1≤ k ≤ 3m + 7 } 

be the vertices of K1, m+1 , K1, 2m+1 and K1, 3m+7 

respectively.Then K1,m+1 K1,2m+1  K1,3m+7 has 6m + 

12 vertices and 6m + 9 edges. 

 Definef: V ( K1,m+1  K1,2m+1  K1,3m+7)  { 1, 

2, 3, ..., 6m + 12 } byf ( w ) = 6m + 11, f ( wk ) = 2k 

 1, 1≤ k ≤ 3m + 5 and f ( w3m+6 ) = 6m + 10,f ( w3 m+7 

) = 6m + 12.f ( v ) = 4, f ( v j ) = 2m + 2j + 6, 1 ≤ j ≤ 

2m + 1 andf ( u ) = 2, f ( u i ) = m + 2i, 1 ≤ i ≤ m + 1. 

The edge label of wwk is 3m + k + 5, 1 ≤ k ≤ 3m + 5, 

6m + 11 and 6m + 12. The edge label of vv j is m + j + 

5,1 ≤ j ≤ 2m + 1 and the edge label of uu i is 

2

2i2m  , 1 ≤ i ≤ m + 1. 

 Hence the induced edge labels 6m+9 are not 

receiving distinct edges. 

 The Skolem mean labeling of K1,m+1 K1,2m+1 

K1,3m+7 are illustrated in Fig.2.15, Fig.2.16 and 

Fig.2.17 respectively. 

 Consider the graph G = K1,5 K1,9 K1,19 where 

m = 4.  

 Then | V | = p = 36 and | E | = q = 33.  

 

K1,19 
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K1,9  

 

K1,5 

 

 Therefore, the edge label of ( 35,1 ) is 18 in K1,19 

and the edge label of ( 4,32 ) is 18 in K1,9. 

 Therefore, the two edge labels are same in the 

graph. 

 Therefore, the edge labels are not distinct in the 

graph.  

 Therefore, the graph G = K1,5 K1,9 K1,19 is 

not a skolem mean graph. 

 Hence the graph K1,m+1 K1,2m+1 K1,3m+7 is not 

a skolem mean graph. 

 

Case 8: let ℓ = t = m + 2.  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m+2  

K1,2m+3  K1,3m+10. let { u }, {ui: 1≤ i ≤ m + 2}, {v}, { 

vj: 1 ≤ j ≤ 2m + 3 } and {w}, { wk: 1≤ k ≤ 3m + 10 } 

be the vertices of K1,m+2 , K1,2m+3 and K1,3m+10 

respectively.Then K1,m+2 K1,2m+3  K1,3m+10 has 6m 

+ 18 vertices and 6m + 15 edges. 

 Definef: V ( K1,m+2  K1,2m+3  K1,3m+10 )  { 1, 

2, 3, ..., 6m + 18 } byf ( w ) = 6m + 17, f ( wk ) = 2k 

 1, 1 ≤ k ≤ 3m + 8 and f ( w3 m+9 ) = 6m + 16,f ( 

w3m+10 ) = 6m + 18. f ( v ) = 4, f( vj ) = 2m +2j + 8, 1 

≤ j ≤ 2m + 3 and f ( u ) = 2, f (u i) = m + 2i, 1 ≤ i ≤ m 

+ 2. The edge label of wwk is 3m + k + 8, 1 ≤ k ≤ 3m 

+ 8, 6m + 17 and 6m + 18. The edge label of vv j is m 

+ j + 6, 1 ≤ j ≤ 2m + 3 and the edge label of uui is 

2

2i2m  , 1 ≤ i ≤ m + 2 . 

 Hence the induced edge labels 6m + 15 are not 

receiving distinct edges. 

 The Skolem mean labeling of K1,m+2 K1,2m+3 

K1,3m+10 are illustrated in Fig.2.18, Fig.2.19 and 

Fig.2.20 respectively. 

 Consider the graph G = K1,6 K1,11 K1,22 

where m = 4.  

 Then | v | = p = 42 and | E | = q = 39.  

 

 

K1,22 

 

K1,11  

 

K1,6 
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 Therefore, the edge label of ( 41,1 ) is 21 in K1,22 

and the edge label of ( 4,38 ) is 21 in K1,11. 

 Therefore, the two edge labels are same in the 

graph. 

 Therefore, the edge labels are not distinct in the 

graph.  

 Therefore, the graph G = K1,6 K1,11 K1,22 is 

not a skolem mean graph. 

 Hence the graph K1,m+2 K1,2m+3 K1,3m+10 is not 

a skolem mean graph. 

 

Case 9: let ℓ = t = m + 3.  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m+3  

K1,2m+5  K1,3m+13 .let { u }, {ui:1≤ i ≤ m + 3},{v}, { 

vj: 1 ≤ j ≤ 2m + 5 } and {w}, { wk: 1 ≤ k ≤ 3m + 13 } 

be the vertices of K1,m+3 , K1,2m+5 and K1,3m+13 

respectively.Then K1,m+3 K1,2m+5  K1,3m+13 has 6m 

+ 24 vertices and 6m + 21 edges. 

 Definef: V ( K1,m+3  K1,2m+5  K1,3m+13 )  { 1, 

2, 3, ..., 6m+24 } by f ( w ) = 6m + 23, f( wk ) = 2k  

1, 1 ≤ k ≤ 3m + 11 and f (w3m+12 ) = 6m + 22, f ( 

w3m+13 ) = 6m + 24. f ( v ) = 4, f( vj ) = 2m + 2j + 10, 

1 ≤ j ≤ 2m + 5 andf (u) = 2, f (u i) = m + 2i, 1 ≤ i ≤ 

m+3. The edge label of wwk is 3m + k + 11,1 ≤ k ≤ 

3m + 11, 6m + 23 and 6m + 24. The edge label o f vvj 

ism + j + 7, 1 ≤ j ≤ 2m + 5 and the edge label of uu i 

is 
2

2i2m  , 1 ≤ i ≤ m + 3. 

 Hence the induced edge labels 6m + 21 are not 

receiving distinct edges. 

 The Skolem mean labeling of K1,m+3 K1,2m+5 

K1,3m+13 are illustrated in Fig.2.21, Fig.2.22 and 

Fig.2.23 respectively. 

 Consider the graph G = K1,7 K1,13 K1,25 

where m = 4.  

Then | v | = p = 48 and | E | = q = 45.  

 

K1,25  

 

K1,13 

 

 

K1,7 

 

 Therefore, the edge label of ( 47,1 ) is 24 in K1,25 

and the edge label of ( 4,44 ) is 24 in K1,13. 

 Therefore, the two edge labels are same in the 

graph. 

 Therefore, the edge labels are not distinct in the 

graph.  

 Therefore, the graph G = K1,7 K1,13 K1,25 is 

not a skolem mean graph. 

 Hence the graph K1,m+3 K1,2m+5 K1,3m+13 is not 

a skolem mean graph. 

 

Case 10: let ℓ = t = m + r where r = 0, 1, 2, 3, ... .  

 Consider the graph K1,ℓ  K1,p  K1,q = K1,m+r  

K1,2m+2r1  K1,3m+3r+4 . Let{u}, { ui: 1≤ i ≤ m + r}, 

{v}, {vj: 1 ≤ j ≤ 2m + 2r  1} and { w }, { wk: 1≤ k ≤ 

3m + 3r + 4 } be the vertices of K1, m+r , K1, 2m+2r1 

and K1, 3m+3r+4 respectively.Then K1,m+r K1,2m+2r1  

K1,3m+3r+4 has 6m + 6r + 6 vertices and 6m + 6r + 3 

edges. 

 Definef: V ( K1,m+r  K1, 2m+2r  1 K1,3m+3r +4 )  

{ 1, 2, 3, ..., 6m + 6r + 6 } by f ( w )= 6m + 6r + 5, f ( 

wk ) = 2k1, 1≤ k ≤ 3m+3r+2 and f(w3m+3r+3) = 6m + 

6r + 4, f ( w3m+3r+4 ) = 6m + 6r + 6. f ( v ) = 4, f ( v j ) 

= 2m + 2j + 2r + 4, 1≤ j ≤ 2m+2r–1 and f(u) = 2, f(ui) 

= m+2i, 1≤ i ≤ m+r.  The edge label of wwk is 3m + 

3r + k + 2, 1 ≤ k ≤ 3m + 3r + 2, 6m + 6r + 5 and 6m 
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+ 6r + 6. The edge label o f vv j is m + j + r + 4, 1 ≤ j ≤ 

2m + 2r – 1 and the edge label of uu i is 
2

2i2m  , 1≤  

i ≤ m + r . Also, the edge label of ww1 is 3m + 3r + 3 

and the edge label of vv2m+2r-1 is 3m + 3r + 3. 

Therefore, the edge labels are not distinct. Therefore, 

the induced edge labels 6m + 6r + 3 are not receiving  

distinct edges. Which is a contradiction. Hence K1,ℓ  

K1,p  K1,q is not a skolem mean graph if | p – q | > 

4+ℓ .Where ℓ = 1, 2, 3, … .Hence the theorem. 

 

Conclusion 

 The communications network addressing: A 

communicat ion network is composed of nodes, each 

of which has computing power and can transmit and 

receive messages over communicat ion links, wireless 

or cabled. The basic network topologies include fully 

connected, mesh, star, ring, tree, bus. A single 

network may consist of several interconnected 

subnets of different topologies.  

 Networks are further classified as Local Area 

Networks (LAN), e.g. inside one building, or Wide 

Area Networks (WAN), e.g. between buildings. It 

might beuseful to assign each user terminal a ―node 

label,‖ subject to the constraint that all connecting 

―edges‖ (communication links) receive distinct 

labels. In this way, the numbers of any two 

communicat ing terminals automatically specify (by 

simple subtraction) the link label of the connecting 

path; and conversely, the path label uniquely 

specifies the pair of user terminals which it  

interconnects.Researches may get some in formation  

related to graph labeling and its applications in  

communicat ion field and can get some ideas related 

to their field of research. 

 For each kind of application, depending on 

problem scenario a kind of graph is used for 

representing the problem. A suitable labeling is 

applied on that graph in order to solve the problem. 

Starting from establishing fast and efficient  

communicat ion. 
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