L-Fuzzy Meet Semi Almost Ideals

Saraswathi Narayanan College, Madurai, Tamil Nadu, India

OPEN ACCESS

Volume: 9

Abstract

P. Veerammal

Department of Mathematics

Algebraic structures like fuzzy sub rings of L-Fuzzy sets have been well studied in the case where the lattice L is distributive. In this paper axioms the concepts can be generalised to the case where the lattice is not distributive. The aim of this current paper is to define the concept of L-fuzzy meet semi almost ideals and also Intutionistic L-fuzzy meet semi almost ideals. Investigate some theorems and examples.

Keywords: L-fuzzy Sets, L-fuzzy Almost Ideals, L-fuzzy Meet Semi Almost Ideals, Non-Distributive Lattice.

Introduction

Zadeh [1] introduced the concept of fuzzy sets in 1965. Intuitionistic Fuzzy sets was initiated by K.T.Akanassov [2]. In our previous papers [5], [6] and [7] the concept of L-Fuzzy Almost Ideal (LFAI) was introduced and concept of primality in L-Fuzzy Almost Ideals and Intutionistic L-Fuzzy Almost Ideals was studied.In [10] ,[11] Chellappa.B and Anand .B discussed Fuzzy join semi L-ideal and Fuzzy join subsemilattices. A.Kavitha and B.Chellappa studied A study on fuzzy meet semi L-ideal and Fuzzy meet semi L-Filter in 2013. In [15] R. Arimalar and Dr. B. Anandh investigated An Intuitionstic Fuzzy Meet Semi L- Filter.

Preliminaries

Let X be a nonempty subset, (L, \leq, \lor, Λ) be a complete distributive lattice, which has least and greatest elements, say 0 and 1 respectively. Relevant definitions are recalled in this section.

Definition 2.1 Let X be a nonempty set. A mapping by μ : X \rightarrow [0,1] is called a fuzzy subset of X.

Definition 2.2 Let X be any non-empty set. A mapping $\mu: X \to L$ with $\mu(0)=1$ and $\mu(1)=0$ is called a L-fuzzy subset of X.

Definition 2.3 Let A be a fuzzy meet semi Lattice. A fuzzy meet subsemi Lattice $\mu: X \rightarrow [0,1]$ is called fuzzy meet semi L- ideal of A if $\forall x, y \in A$, $\mu(x \land y) \ge \max{\{\mu(x), \mu(y)\}}$

Definition 2.4 Let A be a fuzzy join semi Lattice. A fuzzy join subsemi Lattice $\mu: X \rightarrow [0,1]$ is called fuzzy join semi L- ideal of A if $\forall x, y \in A, \mu(x \land y) \le \min{\{\mu(x), \mu(y)\}}$

Definition 2.5 Let R be a ring with unity. Let L be a lattice (L, \leq, \lor, \land) not necessarily distributive with least and greatest element 0 and 1 respectively. μ : R \rightarrow L with $\mu(0) = 1$ and $\mu(1) = 0$ is said to be L-fuzzy almost ideal if $\forall x, y \in \mathbb{R}$

no. S1, 2022, pp. 139–42. DOI: https://doi.

https://doi. org/10.34293/sijash. v9iS1-May.

5951

Special Issue: 1

Month: May

Year: 2022

P-ISSN: 2321-788X

E-ISSN: 2582-0397

Impact Factor: 3.025

Citation:

Veerammal, P. "L-Fuzzy Meet Semi Almost Ideals." *Shanlax International Journal of Arts, Science and Humanities*, vol. 9, no. S1, 2022,

- $\mu(x-y) \not< \mu(x) \land \mu(y)$
- $\mu(x y) \not< \mu(x)$ and $\mu(x y) \not< \mu(y)$

Definition 2.6 Let (L, \leq) be any lattice with an involutive order reversing operation N: $L \rightarrow L$. Let X be any non-empty set. An Intuitionistic L-Fuzzy Set (ILFS) A in X is defined as an object of the form $A = \{ < x , \mu(x), \nu(x) > / x \in X \}$, where the functions $\mu : X \rightarrow L$ and $\nu : X \rightarrow L$ define the degree of membership and the degree of non-membership respectively and for every $x \in X$ satisfy $\mu(x) \leq N(\nu(x))$.

Definition 2.7 An Intuitionistic L-fuzzy subset $A = \{ \le x , \mu(x), \nu(x) > / x \in X \}$ of a ring R is called an Intuitionistic L-fuzzy subring of R if $\forall x, y \in R$

- $\mu_A(x-y) \ge \mu_A(x) \wedge \mu_A(y)$
- $\mu_A(xy) \ge \mu_A(x) \land \mu_A(y)$
- $v_A(x-y) \le v_A(x) \lor v_A(y)$
- $v_A(xy) \le v_A(x) \quad \forall vA(y)$

Definition 2.8 Let $A = \{ \le x, \mu(x), \nu(x) > / x \in X \}$ be an Intuitionistic L-fuzzy set of R. It is called an Intuitionistic L-fuzzy ideal (ILFI) of R if $\forall x, y \in R$

- $\bullet \quad \mu_{A}(x\text{-}y) \geq \ \mu_{A}(x) \ \land \ \mu_{A}(y)$
- $\mu_{A}(xy) \ge \mu_{A}(x) \vee \mu_{A}(y)$
- $v_A(x-y) \le v_A(x) \lor v_A(y)$
- $v_A(xy) \le v_A(x) \land v_A(y)$

Definition 2.9 Let R be a ring with unity. Let L be a lattice (L, \leq, V, Λ) not necessarily distributive with least and greatest element 0 and 1 respectively, with an involutive order reversing operation N: L \rightarrow L. Any ILFS defined by (μ, ν) where $\mu(0) = 1$ and $\mu(1) = 0$ said to be Intuitionistic L-fuzzy Almost Ideal (ILFAI) if $\forall x, y \in \mathbb{R}$

- $\mu(x y) \not< \mu(x) \land \mu(y)$
- $\mu(x y) \not < \mu(x)$ and $\mu(x y) \not < \mu(y)$
- $v(x-y) \ge v(x) \lor v(y)$
- $v(x y) \ge v(x)$ and $v(x y) \ge v(y)$

Remark 2.10 Consider μ : X→L. If L is totally ordered then for all $x,y \in \mathbb{R}$, $\mu(x)$ and $\mu(y)$ are comparable. That is either $\mu(x) \Box \mu(y)$ or $\mu(x)=\mu(y)$ or $\mu(x) \Box \mu(y)$. But if L is not totally ordered then are four possibilities $\mu(x) \Box \mu(y)$ or $\mu(x) = \mu(y)$ or $\mu(x) \Box \mu(y)$ or $\mu(x)$ and $\mu(y)$ are not comparable. We use the notation $\mu(x)$) $\prec \mu(y)$ to mean, " $\mu(x) \Box \mu(y)$ or $\mu(x) = \mu(y)$ or $\mu(x)$ and $\mu(y)$ or $\mu(x)$ and $\mu(y)$ are not comparable. We use the notation $\mu(x)$) $\prec \mu(y)$ to mean, " $\mu(x) \Box \mu(y)$ or $\mu(x) = \mu(y)$ or $\mu(x)$ and $\mu(y)$ are not comparable.

L-Fuzzy Meet Semi Almost Ideals

Definition 3.1 Let R be a ring with unity. Let L be a lattice $(L, \leq, \lor, \land, \land)$ not necessarily distributive with least and greatest element 0 and 1 respectively. μ : $R \rightarrow L$ with $\mu(0) = 1$ and $\mu(1) = 0$ is said to be L-fuzzy semi almost ideal if $\mu(x y) \not\prec \mu(x) \lor \mu(y)$, for all $x, y \in R$.

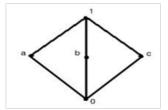
Definition 3.2 Let R be a ring with unity. Let L be a lattice (L, \leq, \lor, \land) not necessarily distributive with least and greatest element 0 and 1 respectively. $\mu : R \rightarrow L$ with $\mu (0) = 1$ and $\mu (1) = 0$ is said to be L-fuzzy meet semi almost ideal if $\mu(x \land y) \not\leq \mu(x) \lor \mu(y), \forall x, y \in R$.

Definition 3.3 Let R be a ring with unity. Let L be a lattice (L, \leq, V, Λ) not necessarily distributive with least and greatest element 0 and 1 respectively. $\mu : R \rightarrow L$ with $\mu (0) = 1$ and $\mu (1) = 0$ is said to be Intuitionistic L-fuzzy meet semi almost ideal if $\forall x, y \in R$

- $\mu(x \land y) \not< \mu(x) \lor \mu(y)$
- $\mu(x \land y) \ge \mu(x) \land \mu(y)$

Example 3.4 The following is an example of a L-fuzzy meet semi almost ideal. Let $R = \{0, a, b, c, 1\}$. Let L be a lattice (L, \leq , V, Λ) defined by below Hasse diagram. Note that L is not distributive. Define

 μ : R \rightarrow L with $\mu(x) = 1$ as $\mu(x) = \{1 \text{ if } x = 0.4 \text{ a if } x=0.5 \text{ b if } x=0.6 \text{ c if } x=0.7 \text{ 0 if } x=0.8)\}$



Verification that $\boldsymbol{\mu}$ is a L-fuzzy meet semi almost ideal can be summarized in the form of a table as follows

X	у	0.4	0.5	0.6	0.7	0.8
0.4	$\mu(x) \lor \mu(y)$	1	1	1	с	1
	$\mu(x \wedge y)$	1	1	1	1	1
0.5	$\mu(x) \lor \mu(y)$	1	а	1	1	А
	$\mu(x \wedge y)$	1	а	а	а	а
0.6	$\mu(x) \lor \mu(y)$	1	1	b	1	В
	$\mu(x \wedge y)$	1	а	b	b	В
0.7	$\mu(x) \lor \mu(y)$	с	1	1	с	1
	$\mu(x \wedge y)$	а	1	b	а	c
0.8	$\mu(x) \lor \mu(y)$	1	1	1	1	1
	$\mu(x \wedge y)$	1	с	1	с	а

L-fuzzy meet semi almost ideal

Example 3.5 Let L be the lattice given by Hasse diagram in figure-I. Note that it is not distributive. N: L→L is defined by N(0) = 1, $N(a_i) = a_{3-i}$, N(b) = b, $N(c_i) = c_{3-i}$, N(1) = 0.

Let A be an ILFS defined by (μ, v) where $\mu(x) = 0, v(x) = 1$ if $x \in Z - \langle 3 \rangle - \langle 5 \rangle$ $\mu(x) = a_1, v(x) = a_1$ if $x \in \langle 3 \rangle - \langle 3^2 \rangle - \langle 5 \rangle$ $\mu(x) = a_2, v(x) = a_1$ if $x \in \langle 3^2 \rangle - \langle 3^3 \rangle - \langle 5 \rangle$ $\mu(x) = a_3, v(x) = a_1$ if $x \in \langle 3^3 \rangle - \langle 5^4 \rangle - \langle 5 \rangle$ $\mu(x) = b = v(x)$ if $x \in \langle 15 \rangle$ $\mu(x) = c_1, v(x) = c_1$ if $x \in \langle 5^2 \rangle - \langle 5^3 \rangle - \langle 3 \rangle$ $\mu(x) = c_3, v(x) = c_1$ if $x \in \langle 5^3 \rangle - \langle 5^4 \rangle - \langle 3 \rangle$ $\mu(x) = 1, v(x) = 0$ if x = 0

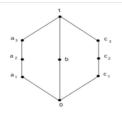


Figure I

By routine calculation we can verify that A is intuitionistic L-fuzzy meet semi almost ideal.

Theorem 3.6 The union of two intuitionistic L-fuzzy meet semi almost ideal is an intuitionistic L-fuzzy meet semi almost ideal.

Theorem 3.7 The intersection of two intuitionistic L-fuzzy meet semi almost ideal is an intuitionistic L-fuzzy meet semi almost ideal.

Theorem 3.8 The complement of two intuitionistic L-fuzzy meet semi almost ideal is an intuitionistic L-fuzzy meet semi almost ideal.

Conclusion

In this paper we have developed the concept of L-fuzzy meet semi almost ideal and also investigate the Intuitionistic L-fuzzy meet semi almost ideal in the case of L is not necessarily distributive. We have proved some theorems and examples.

References

- 1. L.A.Zadeh, Fuzzy sets, Information and Control,vol:8,pp:338-353,1965
- 2. K.T.Akanassov, Intuitionistic Fuzzy sets, Fuzzy sets and systems, vol:20(1) ,pp:87-96, 1986 .
- 3. J.A.Goguen,L-Fuzzy sets,J.Math.Anal.Appl ,pp:145-174,1967.
- 4. A.Rosenfeld, Fuzzy Groups, J.Math.Anal.Appl, vol:35, pp:512-517, 1971.
- 5. P.Veerammal and G.Velammal, L Fuzzy Almost Ideals, IJMTT, vol:50, pp:23-25,2017.
- 6. P.Veerammal and G.Velammal, Primality of L-Fuzzy Almost Ideals, IJMTT,vol:51, pp:23-25,2017.
- P.Veerammal and G.Velammal, Intutionistic L-Fuzzy Almost Ideals, IJMA, vol.51, 2018,197-203
- 8. Wang Jin Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, vol:8, pp:133-139,1982.
- 9. N.Ajmal and K.V.Thomas, Fuzzy Lattice I Journal of Fuzzy Mathematics, vol-10, No.2, pp:255-274,2002.
- 10.Chellappa.B and Anand .B ,Fuzzy join semi L-ideal, Indian Journal of Mathematics and Mathematical sciences,Vol:7, pp:103-109,2011.
- 11. Chellappa.B and Anand.B, Fuzzy join subsemilattices, vol:7, No.2, pp 111-119, 2011.
- 12. Gratzer. G, General Lattice Theory, Academic Press Inc. 1978.
- 13. Nandha.S, FuzzyLattice, Bull.Cal.Math.Soc.81,1989.
- 14.A.Kavitha and B.Chellappa, A study on fuzzy meet semi L-ideal and Fuzzy meet semi L-Filter, 2013.
- 15.R. Arimalar, Dr. B. Anandh, An Intuitionstic Fuzzy Meet Semi L- Filter, International Journal of Scientific Engineering and Technology, Vol:4 Issue No:5, pp: 277-280,2015