
RajaRajeswari College of Engineering, Bangalore42

Shanlax

International Journal of Arts, Science and Humanities

Deep Learning Malware Detection
Using Auto Encoder
Deepa K.R
Department of Master of Computer Applications
Raja Rajeswari College of Engineering, Bengaluru

Bhavyashree V
Department of Master of Computer Applications
Raja Rajeswari College of Engineering, Bengaluru

Abstract
Nowadays, in the arena of malware detection, the growing constraints of traditional
detection methods, laterally with the improving precision of detection methods
based on artificial intelligence algorithms, are moving research findings in this zone
in favour of the latter. As a result, we offer a novel. This work includes a malware
detection model. In a deep learning model, this model combines a grey-scale picture
representation of malware with an autoencoder network, examines the viability
of the grey-scale image approach malicious software based on the autoencoder
reconstruction error, and employs the dimensionality.The auto encoder’s reduction
characteristics are used to distinguish malware from benign software. Using the
suggested detection model, the proposed detection model attained an accuracy of
96% and a steady F-score of about 96%. We collected an Android-side dataset
that outperformed certain classic machine learning detection techniques.Malware
detection, autoencoders, malware images, mobile application security.

Keywords: Autoencoder, Grey-scale image, F-score

Introduction
 The fast development of mobile internet technology in the outcomes
of the last couple of centuries in the rise the software industry. Every
day, malware is spreading more and more. Considering the most
recent China Internet Annual Network Security Report [1], there
were 13,510,900 cases of mobile Internet malware programmes as of
2019, with over 2,791,300 new cases introduced this year alone. Since
of the open the nature of Android application market, the Android
system has been the secret to numerous mobile-based malware
assaults.With the rise in Android malware security concerns, it is
critical to devise an effective and creative mobile malware detection
approach to address the issue.
	 Current	 malware	 identification	 approaches	 are	 constrained	 by	
the	amount	of	detection	criteria	 that	must	be	manually	configured.	
In today’s world of rising malware, it is hard to identify many new
malware	versions	[2].	With	the	rise	of	artificial	intelligence,	malware	
detection approaches integrated with AI algorithms have performed
better in recent years. These detection approaches are more accurate,
resilient, and generalizable than standard malware detection

OPEN ACCESS

Volume: 11

Special Issue: 1

Month: July

Year: 2023

E-ISSN: 2582-0397

P-ISSN: 2321-788X

Impact Factor: 3.025

Received: 02.05.2023

Accepted:14.06.2023

Published: 01.07.2023

Citation:
Deepa, KR, and V.
Bhavyashree. “Deep
Learning Malware
Detection Using Auto
Encoder.” Shanlax
International Journal
of Arts, Science and
Humanities, vol. 11,
no. S1, 2023, pp. 42–48.

DOI:
https://doi.org/10.34293/
sijash.v11iS1-July.6314

43http://www.shanlaxjournals.com

Shanlax

International Journal of Arts, Science and Humanities

techniques, and they can reduce the danger of false detection in the case of many freshly developed
malware[3]. As a conclusion, investigating malware detection systems based on these algorithms
is	more	intriguing	scientifically.
 In the information preliminary processing timing, popular ways to extract for data with features
include static extraction and dynamic extraction. Static the outcomes of the last couple of centuries
without	executing	the	software	programme,	such	as	obtaining	byte	code	file	header	information.	
The fundamental premise of static analysis features is to retrieve the program’s source code or
byte code via software de-compilation and analyse the semantic features and semantic information
stored within it. Such detection methods include MaMadroid proposed by Mariconti et al. and a
malware detection technique proposed by Wenjin Li et al[4], that used Android-side application
permission information, API call information, and other static data for malware detection.

Literature Survey
Malware Identification in Android
 Static evaluation screens application components without actually executing them. W. Li and
colleagues	created	a	malware	finding	method	based	on	a	deep	belief	network.	They	suggested	API	
functions	and	risky	privileges	as	two	categories	of	Android	app	features	for	malware	classification.	
the programme. analysis, which looks at the Android API calls made by a software programme,
was the focus of R. Nix et al[5]. How an application relates to the system that runs on Android is
determined by network API calls. A software programme needs this kind of interactions for proper
operation, and hence provides critical data about an application’s behaviour.
	 Deep	Refiner	malware	identification	system	created	by	K.	Xu	et	al.	use	complex	networks	with	
a	variety	of	layers	that	are	invisible.	XML	values	are	extracted	from	XML	files	by	DeepRefiner	
during the preparation phase. Retrieving byte code semantics from deconstructing modules at the
initial	detection	layer.	The	dex	file	is	located	in	the	second	detection	layer	[6].	Applications	are	
then	referred	to	by	DeepRefiner	as	matrices	that	sophisticated	neural	networks	may	use	as	inputs.	
Through non-linear transformation hidden layers in brain networks produce recognition traits from
incoming matrices.

Detecting Malware Via Dynamic Analysis
 The programme is executed on either a virtual computer or a real device as segment of the
dynamic analysis approach. H. Liang et al. created based on the assumption the subject painting
and	ransomware	classification	are	comparable,	methods	of	natural	language	processing	for	Android	
malware examination have been developed. They developed a technique that considers pathogen of
malware as thematic extraction and treats system calling sequences as texts[7]. The system calls were
initially translated into vector space using an embedding layer. The excessive presentation matrices
of the extended sequence were then processed by the vertical multiple convolutions modules for
obtaining probable the highest level knowledge. The regression function was completed using a
perception that had multiple layers with a SoftMax layer[8].

Existing Approach
	 Modern	spyware	identification	approaches	are	limited	by	the	amount	of	detection	criteria	that	
must	 be	manually	 configured.	 In	 today’s	world	 of	 rising	malware,	 it	 is	 hard	 to	 identify	many	
new	malware	versions	[2].	With	the	rise	of	artificial	intelligence,	malware	detection	approaches	
integrated with AI algorithms have performed better in recent years. These detection approaches
are more accurate, resilient, and generalizable than standard malware detection techniques, and
they can reduce the danger of false of false detection when it comes to many freshly developed

RajaRajeswari College of Engineering, Bangalore44

Shanlax

International Journal of Arts, Science and Humanities

malware[8].	As	a	conclusion,	it	is	greater	scientifically	interesting	to	investigate	malware	detection	
systems based on these algorithms.
	 The	major	approaches	 in	 the	classical	development	and	classification	phase	 include	malware	
revealing systems based on deep learning models and machine learning techniques. In
techniques	 like	 those	utilised	by	Wang	et	 al.	 [18],	who	used	five	machine	 learning	models	 for	
software	classification,	 including	 the	Support	Vector	Machine,	machine	 learning	algorithms	are	
predominantly	used	as	classification	models.	(SVM),		K-Nearest	Neighbour	(KNN),	Naive	Bayes	
(NB),	Classification	Regression	Tree	(CART),	and	Random	Forest	(RF).	Kumar	et	al.	suggested	a	
feature learning model that employs a collection several approaches for machine learning identify
malware with little overhead and good accuracy.
 In this paper, we extract static characteristics from the bytecode of several command methods
of Android applications [9]. The grey-scale picture corresponding to each malware is then
reconstructed using an auto-encoder convolution neuronal network-based architecture. Finally, the
auto-encoder is tested in use of recreating the high-dimensional aspects of malware performance.
To accomplish malware categorization and detection, we created a neural network with an auto-
encoder-based design. Additionally, experiments were conducted using data sets provided from
VisureShare.	The	studies’	findings	show	that	our	strategy	excels	over	existing	machine	learning	
techniques and certain deep learning malware detection models based on malware photos.

Proposed System
 We suggest a method for creating feature pictures for each type of malware and gentle software.
The basic strategy is to transform the software’s byte code’s for the various procedures into grey-
scale	pictures	for	further	model	training	and	classification[10].	We	employed	an	auto-encoder	based	
on a convolution neuronal network to detect the high-dimensional characteristics in such grey-
scale	pictures,	and	we	experimentally	verified	the	scheme’s	practicality.	We	present	a	model	of	a	
neural	network	based	on	auto	encoder	networks	for	the	malware	detection	classification	problem	
and empirically demonstrate its excellent accuracy.
 This part highlights the work on malware picture production and the static malware detection
consider deep learning-based models[18]. As a result, this segment is separated into two parts:
the malware picture production method and the static malware revealing performance deep
learning-based	models.	Artificial	neural	networks	can	be	applied	 to	feature	extraction	phase	for	
the recognition of malware to remove the corresponding features of the software additional to
extracting the corresponding static feature information, such as API calls, permission information,
and	so	on,		dynamic	component	information,	such	as	network	activity,	log	files,	and	so	on[11].	This	
methodology for feature extraction is more automated and simpler than previous manual feature
extraction methods.
 The data representation must be considered while automatically extracting software features
using neural nets. So that it can extract the main features more effectively and assure the correctness
of	the	test	findings.	We	present	a	malware	detection	strategy	that	is	founded	on	automated	encoder	
network[12]. Figure 2 depicts the general structure and primary responsibilities of our technique
for	detecting	malware.	First,	innocuous	files	and	malware	are	converted	into	appropriate	greyscale	
graphics	by	decompiling	the	APK	files.	The	retrieved	coded	data	from	software	methods	and	bytes	
are transformed into decimal data and coated with pixel values. The greyscale photos are then
processed	by	two	deep	learning	networks	to	perform	two	tasks.	The	first	deep	learning	network	
is	called	automated	encoder	network	-	1	(AE-1)	and	is	operated	to	investigate	the	possibility	of	
employing grey-scale photographs to characterise the relevant properties of software’s[13]. The
second	deep	learning	network	is	called	automatic	encoder	network	-	2	(AE-2),	which	we	utilise	

45http://www.shanlaxjournals.com

Shanlax

International Journal of Arts, Science and Humanities

to distinguish between harmful and benign software. The next parts will go through the thorough
design process of AE-1 and AE-2.
 The primary goal of the feature data pre-processing step is to supply input data for the neural
network model. To symbolize the characteristics of the software, we use a grey-scale image of the
software byte code[17]. The so-called grey-scale image of the software bytecode is to decompile
the	software	to	obtain	its	binary	byte	code,	then	convert	it	into	a	decimal	type	by	byte	and	fill	it	
into	a	fixed	size	two-dimensional	matrix,	because	a	byte	is	8	bits,	that	corresponds	exactly	to	the	
range	of	data	from	0	to	255	and	can	be	composed	as	a	grey-scale	image[14].The	benefits	of	utilising	
this strategy are twofold. For starters, this way of extracting software functionality is less time
consuming and more straightforward. Second, because our subsequent network model is composed
of	a	 the	use	of	a	convolution	neural	network,	which	a	fixed	size	multi-dimensional	matrix	 type	
of	data,	the	grey-scale	image	converted	from	the	software	file	byte	code	is	a	suitable	input	to	the	
convolution	network	for	training	and	classification.

Figure 1 Proposed Architecture

 However, there are a number of drawbacks to converting software binary information into
greyscale graphics. Although the software binary code contains a variety of features, it also contains
a large amount of works that focus on how to convert software of different sizes into images of
the same size, and must consider the sticking points of how to do the best possible job of reducing
redundancy in the image generation process [15]. Our work diverges from prior work in that we
attempt	to	extract	the	binary	code	of	the	method	field	in	the	programme	and	convert	a	portion	of	
the data into byte code to complete the development of the grey-scale image [16]. Analysing the
viability of such a programme is an important aspect of our work. The duplicated information
increases	the	pre-processing	cost	and	lowers	the	accuracy	and	resilience	of	the	model	classification	
later on.

Implementation
 Input Data: The input data was collected from the dataset repository. The data selection is the
process of choosing the data to be used in malware detection. We must use the malware detection
dataset	 for	 this	 project.	The	 dataset	 that	 includes	 data	 about	 host,	 categorization	 (malware	 and	
benign),	and	other	factors.	We	must	use	the	pandas	packages	in	Python	to	read	the	dataset.	Our	
dataset	is	presented	asa	‘.csv’	file	extension.

RajaRajeswari College of Engineering, Bangalore46

Shanlax

International Journal of Arts, Science and Humanities

Pre-processing
 Data pre-processing is the method of deleting undesirable data from the dataset. Operations
for transforming pre-processed data are used to transform the dataset into a structure suitable for
machine learning. Missing data removal: In this process, the null values such as missing values
and	Nan	values	are	replaced	by	0.Encoding	Categorical	data:	That	categorical	data	is	defined	as	
variables	with	a	finite	set	of	label	values.	Feature	selection:	In	our	process,	we	have	to	implement	the	
feature	selection	such	as	principle	component	analysis	(PCA).The	Principle	Component		Analysis	
is an unsupervised learning the algorithm that is used for the dimensionality reduction in machine
learning[16]. It is statistical process that converts the observations of correlated features into group
of linearly uncorrelated features with the aid of orthogonal transformation.

Results

 Figure 2 Data Selection
 Figure 2. shows the data selection is the process of selecting the data for detecting the malware.

 Figure 3 Preprocessing
 Figure 3 shows the data pre-processing is the method of deleting undesirable data from the
dataset. Operations for transforming pre-processed data are used to transform the dataset into a
structure suitable for machine learning.

Conclusions
 In this research, we offer a unique technique to malware detection according to the foundation
of combining grey-scale photos to represent malware characteristics and an auto-encoder network

47http://www.shanlaxjournals.com

Shanlax

International Journal of Arts, Science and Humanities

to	 create	a	 classification	model	 to	 recognise	malware.	The	 investigational	findings	demonstrate	
the practicality of our suggested method of transforming the bytecode of all software methods
into a greyscale picture to denote the characteristics in a software sample. Our technology detects
infection accurately than solutions that use conventional neural network algorithms. In relationship
to previous malware detection systems based on deep learning models, our solution requires shorter
training	and	detection	time.	In	the	future,	we	will	inspect	more	efficient	procedures	for	encoding	
malware feature photos, as well as focus our study on the data pre-processing step to investigate
newer malware detection approaches.

References
1. 	(2019).	China	Internet	Security	Research	Report.	(Nov.	15,	2020).	[Online].	Available:	https://

www.cert.org.cn/publish/main/upload/ File/2019Annual%20report.pdf
2. 	Ye,	Y.,	Li,	T.,	Adjeroh,	D.,	&Iyengar,	S.	S.	(2017).	A	survey	on	malware	detection	using	data	

mining	techniques.	ACM	Computing	Surveys	(CSUR),	50(3),	1-40.
3. S. Rastogi, K. Bhushan, and B. B. Gupta, ‘‘Android applications repackaging detection

techniques for smartphone devices,’’ Proc. Comput. Sci., vol. 78, pp. 26–32, Jan. 2016.
4. 	Pandita,	R.,	Xiao,	X.,	Yang,	W.,	Enck,	W.,	&Xie,	T.	(2013).	{WHYPER}:	Towards	Automating	

Risk	Assessment	of	Mobile	Applications.	 In	22nd	USENIX	Security	Symposium	 (USENIX	
Security	13)	(pp.	527-542).

5. 	Klieber,	W.,	Flynn,	L.,	Bhosale,	A.,	Jia,	L.,	&	Bauer,	L.	(2014,	June).	Android	taint	flow	analysis	
for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of
the	Art	in	Java	Program	Analysis	(pp.	1-6).

6. 	Wang,	 Z.,	 Cai,	 J.,	 Cheng,	 S.,	 &	 Li,	W.	 (2016,	 September).	 DroidDeepLearner:	 Identifying	
Android	malware	using	deep	learning.	In	2016	IEEE	37th	Sarnoff	symposium	(pp.	160-165).	
IEEE.

7. Schultz,	M.	G.,	 Eskin,	 E.,	 Zadok,	 F.,	&Stolfo,	 S.	 J.	 (2000,	May).	Data	mining	methods	 for	
detection of new malicious executables. In Proceedings 2001 IEEE Symposium on Security and
Privacy.	S&P	2001	(pp.	38-49).	IEEE	in	Proc.	IEEE	Symp.	Secur.	Privacy.	(S&P),	May	2001,	
p. 2001, doi: 10.1109/SECPRI.2001.924286.

8. B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy, ‘‘Android permissions:
A	perspective	combining	risks	and	benefits,’’	in	Proc.	17th	ACM	Symp.	Access	Control	Models	
Technol.	(SACMAT),	2012,	pp.	13–22.	

9. C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, ‘‘Quick and accurate Android malware
detection	based	on	sensitive	Apis,’’	in	Proc.	IEEE	Int.	Conf.	Smart	Internet	Things	(SmartIoT),	
Aug. 2018, pp. 143–148.

10. H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, ‘‘ANASTASIA: ANdroidmAlware detection
using STaticanalySIs of applications,’’ in Proc. 8th IFIP Int. Conf. New Technol., Mobility
Secur.	(NTMS),	Nov.	2016,	pp.	1–5.

11. E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and G. Stringhini,
‘‘MaMaDroid: Detecting Android malware by building Markov chains of behavioral models,’’
2016, arXiv:1612.04433.

12. W. Li, Z. Wang, J. Cai, and S. Cheng, ‘‘An Android malware detection approach using weight-
adjusted	deep	learning,’’	in	Proc.	Int.	Conf.	Comput.,	Netw.	Commun.	(ICNC),	Mar.	2018,	pp.	
437–441, doi: 10.1109/ICCNC.2018.8390391.

13. B.	Amos,	H.	Turner,	and	J.	White,	‘‘Applying	machine	learning	classifiers	to	dynamic	Android	
malware detection at scale,’’ in Proc. 9th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC),	Jul.	2013,	pp.	1666–1671.

RajaRajeswari College of Engineering, Bangalore48

Shanlax

International Journal of Arts, Science and Humanities

14. S.	Nari	and	A.	A.	Ghorbani,	‘‘Automated	malware	classification	based	on	network	behavior,’’	
in	Proc.	Int.	Conf.	Comput.,	Netw.	Commun.	(ICNC),	Jan.	2013,	pp.	642–647.	

15. G.	Cabau,	M.	Buhu,	and	C.	P.	Oprisa,	‘‘Malware	classification	based	on	dynamic	behavior,’’	
in	Proc.	18th	Int.	Symp.	Symbolic	Numeric	Algorithms	Sci.	Comput.	(SYNASC),	Sep.	2016,	
pp. 315–318.

16. W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N.	Sheth,	‘‘TaintDroid:	An	information-flow	tracking	system	for	realtime	privacy	monitoring	
on smartphones,’’ ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 1–29, Jun. 2014.

17. Wang,	W.,	Li,	Y.,	Wang,	X.,	Liu,	J.,	&	Zhang,	X.	(2018).	Detecting	Android	malicious	apps	
and	categorizing	benign	apps	with	ensemble	of	classifiers.	Future	generation	computer	systems,	
78, 987-994.

