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Abstract
Nowadays, in the arena of malware detection, the growing constraints of traditional 
detection methods, laterally with the improving precision of detection methods 
based on artificial intelligence algorithms, are moving research findings in this zone 
in favour of the latter. As a result, we offer a novel. This work includes a malware 
detection model. In a deep learning model, this model combines a grey-scale picture 
representation of malware with an autoencoder network, examines the viability 
of the grey-scale image approach malicious software based on the autoencoder 
reconstruction error, and employs the dimensionality.The auto encoder’s reduction 
characteristics are used to distinguish malware from benign software. Using the 
suggested detection model, the proposed detection model attained an accuracy of 
96% and a steady F-score of about 96%. We collected an Android-side dataset 
that outperformed certain classic machine learning detection techniques.Malware 
detection, autoencoders, malware images, mobile application security.
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Introduction
	 The fast development of mobile internet technology in the outcomes 
of the last couple of centuries in the rise the software industry. Every 
day, malware is spreading more and more. Considering the most 
recent China Internet Annual Network Security Report [1], there 
were 13,510,900 cases of mobile Internet malware programmes as of 
2019, with over 2,791,300 new cases introduced this year alone. Since 
of the open the nature of Android application market, the Android 
system has been the secret to numerous mobile-based malware 
assaults.With the rise in Android malware security concerns, it is 
critical to devise an effective and creative mobile malware detection 
approach to address the issue.
	 Current malware identification approaches are constrained by 
the amount of detection criteria that must be manually configured. 
In today’s world of rising malware, it is hard to identify many new 
malware versions [2]. With the rise of artificial intelligence, malware 
detection approaches integrated with AI algorithms have performed 
better in recent years. These detection approaches are more accurate, 
resilient, and generalizable than standard malware detection 
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techniques, and they can reduce the danger of false detection in the case of many freshly developed 
malware[3]. As a conclusion, investigating malware detection systems based on these algorithms 
is more intriguing scientifically.
	 In the information preliminary processing timing, popular ways to extract for data with features 
include static extraction and dynamic extraction. Static the outcomes of the last couple of centuries 
without executing the software programme, such as obtaining byte code file header information. 
The fundamental premise of static analysis features is to retrieve the program’s source code or 
byte code via software de-compilation and analyse the semantic features and semantic information 
stored within it. Such detection methods include MaMadroid proposed by Mariconti et al. and a 
malware detection technique proposed by Wenjin Li et al[4], that used Android-side application 
permission information, API call information, and other static data for malware detection. 

Literature Survey
Malware Identification in Android
	 Static evaluation screens application components without actually executing them. W. Li and 
colleagues created a malware finding method based on a deep belief network. They suggested API 
functions and risky privileges as two categories of Android app features for malware classification. 
the programme. analysis, which looks at the Android API calls made by a software programme, 
was the focus of R. Nix et al[5]. How an application relates to the system that runs on Android is 
determined by network API calls. A software programme needs this kind of interactions for proper 
operation, and hence provides critical data about an application’s behaviour.
	 Deep Refiner malware identification system created by K. Xu et al. use complex networks with 
a variety of layers that are invisible. XML values are extracted from XML files by DeepRefiner 
during the preparation phase. Retrieving byte code semantics from deconstructing modules at the 
initial detection layer. The dex file is located in the second detection layer [6]. Applications are 
then referred to by DeepRefiner as matrices that sophisticated neural networks may use as inputs. 
Through non-linear transformation hidden layers in brain networks produce recognition traits from 
incoming matrices.

Detecting Malware Via Dynamic Analysis
	 The programme is executed on either a virtual computer or a real device as segment of the 
dynamic analysis approach. H. Liang et al.  created based on the assumption the subject painting 
and ransomware classification are comparable, methods of natural language processing for Android 
malware examination have been developed. They developed a technique that considers pathogen of 
malware as thematic extraction and treats system calling sequences as texts[7]. The system calls were 
initially translated into vector space using an embedding layer. The excessive presentation matrices 
of the extended sequence were then processed by the vertical multiple convolutions modules for 
obtaining probable the highest level knowledge. The regression function was completed using a 
perception that had multiple layers with a SoftMax layer[8].

Existing Approach
	 Modern spyware identification approaches are limited by the amount of detection criteria that 
must be manually configured. In today’s world of rising malware, it is hard to identify many 
new malware versions [2]. With the rise of artificial intelligence, malware detection approaches 
integrated with AI algorithms have performed better in recent years. These detection approaches 
are more accurate, resilient, and generalizable than standard malware detection techniques, and 
they can reduce the danger of false of false detection when it comes to many freshly developed 
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malware[8]. As a conclusion, it is greater scientifically interesting to investigate malware detection 
systems based on these algorithms.
	 The major approaches in the classical development and classification phase include malware 
revealing systems based on deep learning models and machine learning techniques. In 
techniques like those utilised by Wang et al. [18], who used five machine learning models for 
software classification, including the Support Vector Machine, machine learning algorithms are 
predominantly used as classification models. (SVM),  K-Nearest Neighbour (KNN), Naive Bayes 
(NB), Classification Regression Tree (CART), and Random Forest (RF). Kumar et al. suggested a 
feature learning model that employs a collection several approaches for machine learning identify 
malware with little overhead and good accuracy.
	 In this paper, we extract static characteristics from the bytecode of several command methods 
of Android applications [9]. The grey-scale picture corresponding to each malware is then 
reconstructed using an auto-encoder convolution neuronal network-based architecture. Finally, the 
auto-encoder is tested in use of recreating the high-dimensional aspects of malware performance. 
To accomplish malware categorization and detection, we created a neural network with an auto-
encoder-based design. Additionally, experiments were conducted using data sets provided from 
VisureShare. The studies’ findings show that our strategy excels over existing machine learning 
techniques and certain deep learning malware detection models based on malware photos.

Proposed System
	 We suggest a method for creating feature pictures for each type of malware and gentle software. 
The basic strategy is to transform the software’s byte code’s for the various procedures into grey-
scale pictures for further model training and classification[10]. We employed an auto-encoder based 
on a convolution neuronal network to detect the high-dimensional characteristics in such grey-
scale pictures, and we experimentally verified the scheme’s practicality. We present a model of a 
neural network based on auto encoder networks for the malware detection classification problem 
and empirically demonstrate its excellent accuracy.
	 This part highlights the work on malware picture production and the static malware detection 
consider deep learning-based models[18]. As a result, this segment is separated into two parts: 
the malware picture production method and the static malware revealing performance deep 
learning-based models. Artificial neural networks can be applied to feature extraction phase for 
the recognition of malware to remove the corresponding features of the software additional to 
extracting the corresponding static feature information, such as API calls, permission information, 
and so on,  dynamic component information, such as network activity, log files, and so on[11]. This 
methodology for feature extraction is more automated and simpler than previous manual feature 
extraction methods.
	 The data representation must be considered while automatically extracting software features 
using neural nets. So that it can extract the main features more effectively and assure the correctness 
of the test findings. We present a malware detection strategy that is founded on automated encoder 
network[12]. Figure 2 depicts the general structure and primary responsibilities of our technique 
for detecting malware. First, innocuous files and malware are converted into appropriate greyscale 
graphics by decompiling the APK files. The retrieved coded data from software methods and bytes 
are transformed into decimal data and coated with pixel values. The greyscale photos are then 
processed by two deep learning networks to perform two tasks. The first deep learning network 
is called automated encoder network - 1 (AE-1) and is operated to investigate the possibility of 
employing grey-scale photographs to characterise the relevant properties of software’s[13]. The 
second deep learning network is called automatic encoder network - 2 (AE-2), which we utilise 
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to distinguish between harmful and benign software. The next parts will go through the thorough 
design process of AE-1 and AE-2.
	 The primary goal of the feature data pre-processing step is to supply input data for the neural 
network model. To symbolize the characteristics of the software, we use a grey-scale image of the 
software byte code[17]. The so-called grey-scale image of the software bytecode is to decompile 
the software to obtain its binary byte code, then convert it into a decimal type by byte and fill it 
into a fixed size two-dimensional matrix, because a byte is 8 bits, that corresponds exactly to the 
range of data from 0 to 255 and can be composed as a grey-scale image[14].The benefits of utilising 
this strategy are twofold. For starters, this way of extracting software functionality is less time 
consuming and more straightforward. Second, because our subsequent network model is composed 
of a the use of a convolution neural network, which a fixed size multi-dimensional matrix type 
of data, the grey-scale image converted from the software file byte code is a suitable input to the 
convolution network for training and classification.

Figure 1 Proposed Architecture

	 However, there are a number of drawbacks to converting software binary information into 
greyscale graphics. Although the software binary code contains a variety of features, it also contains 
a large amount of works that focus on how to convert software of different sizes into images of 
the same size, and must consider the sticking points of how to do the best possible job of reducing 
redundancy in the image generation process [15]. Our work diverges from prior work in that we 
attempt to extract the binary code of the method field in the programme and convert a portion of 
the data into byte code to complete the development of the grey-scale image [16]. Analysing the 
viability of such a programme is an important aspect of our work. The duplicated information 
increases the pre-processing cost and lowers the accuracy and resilience of the model classification 
later on.

Implementation
	 Input Data: The input data was collected from the dataset repository. The data selection is the 
process of choosing the data to be used in malware detection. We must use the malware detection 
dataset for this project. The dataset that includes data about host, categorization (malware and 
benign), and other factors. We must use the pandas packages in Python to read the dataset. Our 
dataset is presented asa ‘.csv’ file extension.
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Pre-processing
	 Data pre-processing is the method of deleting undesirable data from the dataset. Operations 
for transforming pre-processed data are used to transform the dataset into a structure suitable for 
machine learning. Missing data removal: In this process, the null values such as missing values 
and Nan values are replaced by 0.Encoding Categorical data: That categorical data is defined as 
variables with a finite set of label values. Feature selection: In our process, we have to implement the 
feature selection such as principle component analysis (PCA).The Principle Component  Analysis 
is  an unsupervised  learning  the algorithm that is used for the dimensionality reduction in machine 
learning[16]. It is statistical process that converts the observations of correlated features into group 
of linearly uncorrelated features with the aid of orthogonal transformation.

Results

 

  Figure 2 Data Selection
	 Figure 2. shows the data selection is the process of selecting the data for detecting the malware.

 Figure 3 Preprocessing
	 Figure 3 shows the data pre-processing is the method of deleting undesirable data from the 
dataset. Operations for transforming pre-processed data are used to transform the dataset into a 
structure suitable for machine learning.

Conclusions
	 In this research, we offer a unique technique to malware detection according to the foundation 
of combining grey-scale photos to represent malware characteristics and an auto-encoder network 
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to create a classification model to recognise malware. The investigational findings demonstrate 
the practicality of our suggested method of transforming the bytecode of all software methods 
into a greyscale picture to denote the characteristics in a software sample. Our technology detects 
infection accurately than solutions that use conventional neural network algorithms. In relationship 
to previous malware detection systems based on deep learning models, our solution requires shorter 
training and detection time. In the future, we will inspect more efficient procedures for encoding 
malware feature photos, as well as focus our study on the data pre-processing step to investigate 
newer malware detection approaches.
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