
RajaRajeswari College of Engineering, Bangalore42

Shanlax

International Journal of Arts, Science and Humanities

Deep Learning Malware Detection
Using Auto Encoder
Deepa K.R
Department of Master of Computer Applications
Raja Rajeswari College of Engineering, Bengaluru

Bhavyashree V
Department of Master of Computer Applications
Raja Rajeswari College of Engineering, Bengaluru

Abstract
Nowadays, in the arena of malware detection, the growing constraints of traditional
detection methods, laterally with the improving precision of detection methods
based on artificial intelligence algorithms, are moving research findings in this zone
in favour of the latter. As a result, we offer a novel. This work includes a malware
detection model. In a deep learning model, this model combines a grey-scale picture
representation of malware with an autoencoder network, examines the viability
of the grey-scale image approach malicious software based on the autoencoder
reconstruction error, and employs the dimensionality.The auto encoder’s reduction
characteristics are used to distinguish malware from benign software. Using the
suggested detection model, the proposed detection model attained an accuracy of
96% and a steady F-score of about 96%. We collected an Android-side dataset
that outperformed certain classic machine learning detection techniques.Malware
detection, autoencoders, malware images, mobile application security.

Keywords: Autoencoder, Grey-scale image, F-score

Introduction
	 The fast development of mobile internet technology in the outcomes
of the last couple of centuries in the rise the software industry. Every
day, malware is spreading more and more. Considering the most
recent China Internet Annual Network Security Report [1], there
were 13,510,900 cases of mobile Internet malware programmes as of
2019, with over 2,791,300 new cases introduced this year alone. Since
of the open the nature of Android application market, the Android
system has been the secret to numerous mobile-based malware
assaults.With the rise in Android malware security concerns, it is
critical to devise an effective and creative mobile malware detection
approach to address the issue.
	 Current malware identification approaches are constrained by
the amount of detection criteria that must be manually configured.
In today’s world of rising malware, it is hard to identify many new
malware versions [2]. With the rise of artificial intelligence, malware
detection approaches integrated with AI algorithms have performed
better in recent years. These detection approaches are more accurate,
resilient, and generalizable than standard malware detection

OPEN ACCESS

Volume: 11

Special Issue: 1

Month: July

Year: 2023

E-ISSN: 2582-0397

P-ISSN: 2321-788X

Impact Factor: 3.025

Received: 02.05.2023

Accepted:14.06.2023

Published: 01.07.2023

Citation:
Deepa, KR, and V.
Bhavyashree. “Deep
Learning Malware
Detection Using Auto
Encoder.” Shanlax
International Journal
of Arts, Science and
Humanities, vol. 11,
no. S1, 2023, pp. 42–48.

DOI:
https://doi.org/10.34293/
sijash.v11iS1-July.6314

43http://www.shanlaxjournals.com

Shanlax

International Journal of Arts, Science and Humanities

techniques, and they can reduce the danger of false detection in the case of many freshly developed
malware[3]. As a conclusion, investigating malware detection systems based on these algorithms
is more intriguing scientifically.
	 In the information preliminary processing timing, popular ways to extract for data with features
include static extraction and dynamic extraction. Static the outcomes of the last couple of centuries
without executing the software programme, such as obtaining byte code file header information.
The fundamental premise of static analysis features is to retrieve the program’s source code or
byte code via software de-compilation and analyse the semantic features and semantic information
stored within it. Such detection methods include MaMadroid proposed by Mariconti et al. and a
malware detection technique proposed by Wenjin Li et al[4], that used Android-side application
permission information, API call information, and other static data for malware detection.

Literature Survey
Malware Identification in Android
	 Static evaluation screens application components without actually executing them. W. Li and
colleagues created a malware finding method based on a deep belief network. They suggested API
functions and risky privileges as two categories of Android app features for malware classification.
the programme. analysis, which looks at the Android API calls made by a software programme,
was the focus of R. Nix et al[5]. How an application relates to the system that runs on Android is
determined by network API calls. A software programme needs this kind of interactions for proper
operation, and hence provides critical data about an application’s behaviour.
	 Deep Refiner malware identification system created by K. Xu et al. use complex networks with
a variety of layers that are invisible. XML values are extracted from XML files by DeepRefiner
during the preparation phase. Retrieving byte code semantics from deconstructing modules at the
initial detection layer. The dex file is located in the second detection layer [6]. Applications are
then referred to by DeepRefiner as matrices that sophisticated neural networks may use as inputs.
Through non-linear transformation hidden layers in brain networks produce recognition traits from
incoming matrices.

Detecting Malware Via Dynamic Analysis
	 The programme is executed on either a virtual computer or a real device as segment of the
dynamic analysis approach. H. Liang et al. created based on the assumption the subject painting
and ransomware classification are comparable, methods of natural language processing for Android
malware examination have been developed. They developed a technique that considers pathogen of
malware as thematic extraction and treats system calling sequences as texts[7]. The system calls were
initially translated into vector space using an embedding layer. The excessive presentation matrices
of the extended sequence were then processed by the vertical multiple convolutions modules for
obtaining probable the highest level knowledge. The regression function was completed using a
perception that had multiple layers with a SoftMax layer[8].

Existing Approach
	 Modern spyware identification approaches are limited by the amount of detection criteria that
must be manually configured. In today’s world of rising malware, it is hard to identify many
new malware versions [2]. With the rise of artificial intelligence, malware detection approaches
integrated with AI algorithms have performed better in recent years. These detection approaches
are more accurate, resilient, and generalizable than standard malware detection techniques, and
they can reduce the danger of false of false detection when it comes to many freshly developed

RajaRajeswari College of Engineering, Bangalore44

Shanlax

International Journal of Arts, Science and Humanities

malware[8]. As a conclusion, it is greater scientifically interesting to investigate malware detection
systems based on these algorithms.
	 The major approaches in the classical development and classification phase include malware
revealing systems based on deep learning models and machine learning techniques. In
techniques like those utilised by Wang et al. [18], who used five machine learning models for
software classification, including the Support Vector Machine, machine learning algorithms are
predominantly used as classification models. (SVM), K-Nearest Neighbour (KNN), Naive Bayes
(NB), Classification Regression Tree (CART), and Random Forest (RF). Kumar et al. suggested a
feature learning model that employs a collection several approaches for machine learning identify
malware with little overhead and good accuracy.
	 In this paper, we extract static characteristics from the bytecode of several command methods
of Android applications [9]. The grey-scale picture corresponding to each malware is then
reconstructed using an auto-encoder convolution neuronal network-based architecture. Finally, the
auto-encoder is tested in use of recreating the high-dimensional aspects of malware performance.
To accomplish malware categorization and detection, we created a neural network with an auto-
encoder-based design. Additionally, experiments were conducted using data sets provided from
VisureShare. The studies’ findings show that our strategy excels over existing machine learning
techniques and certain deep learning malware detection models based on malware photos.

Proposed System
	 We suggest a method for creating feature pictures for each type of malware and gentle software.
The basic strategy is to transform the software’s byte code’s for the various procedures into grey-
scale pictures for further model training and classification[10]. We employed an auto-encoder based
on a convolution neuronal network to detect the high-dimensional characteristics in such grey-
scale pictures, and we experimentally verified the scheme’s practicality. We present a model of a
neural network based on auto encoder networks for the malware detection classification problem
and empirically demonstrate its excellent accuracy.
	 This part highlights the work on malware picture production and the static malware detection
consider deep learning-based models[18]. As a result, this segment is separated into two parts:
the malware picture production method and the static malware revealing performance deep
learning-based models. Artificial neural networks can be applied to feature extraction phase for
the recognition of malware to remove the corresponding features of the software additional to
extracting the corresponding static feature information, such as API calls, permission information,
and so on, dynamic component information, such as network activity, log files, and so on[11]. This
methodology for feature extraction is more automated and simpler than previous manual feature
extraction methods.
	 The data representation must be considered while automatically extracting software features
using neural nets. So that it can extract the main features more effectively and assure the correctness
of the test findings. We present a malware detection strategy that is founded on automated encoder
network[12]. Figure 2 depicts the general structure and primary responsibilities of our technique
for detecting malware. First, innocuous files and malware are converted into appropriate greyscale
graphics by decompiling the APK files. The retrieved coded data from software methods and bytes
are transformed into decimal data and coated with pixel values. The greyscale photos are then
processed by two deep learning networks to perform two tasks. The first deep learning network
is called automated encoder network - 1 (AE-1) and is operated to investigate the possibility of
employing grey-scale photographs to characterise the relevant properties of software’s[13]. The
second deep learning network is called automatic encoder network - 2 (AE-2), which we utilise

45http://www.shanlaxjournals.com

Shanlax

International Journal of Arts, Science and Humanities

to distinguish between harmful and benign software. The next parts will go through the thorough
design process of AE-1 and AE-2.
	 The primary goal of the feature data pre-processing step is to supply input data for the neural
network model. To symbolize the characteristics of the software, we use a grey-scale image of the
software byte code[17]. The so-called grey-scale image of the software bytecode is to decompile
the software to obtain its binary byte code, then convert it into a decimal type by byte and fill it
into a fixed size two-dimensional matrix, because a byte is 8 bits, that corresponds exactly to the
range of data from 0 to 255 and can be composed as a grey-scale image[14].The benefits of utilising
this strategy are twofold. For starters, this way of extracting software functionality is less time
consuming and more straightforward. Second, because our subsequent network model is composed
of a the use of a convolution neural network, which a fixed size multi-dimensional matrix type
of data, the grey-scale image converted from the software file byte code is a suitable input to the
convolution network for training and classification.

Figure 1 Proposed Architecture

	 However, there are a number of drawbacks to converting software binary information into
greyscale graphics. Although the software binary code contains a variety of features, it also contains
a large amount of works that focus on how to convert software of different sizes into images of
the same size, and must consider the sticking points of how to do the best possible job of reducing
redundancy in the image generation process [15]. Our work diverges from prior work in that we
attempt to extract the binary code of the method field in the programme and convert a portion of
the data into byte code to complete the development of the grey-scale image [16]. Analysing the
viability of such a programme is an important aspect of our work. The duplicated information
increases the pre-processing cost and lowers the accuracy and resilience of the model classification
later on.

Implementation
	 Input Data: The input data was collected from the dataset repository. The data selection is the
process of choosing the data to be used in malware detection. We must use the malware detection
dataset for this project. The dataset that includes data about host, categorization (malware and
benign), and other factors. We must use the pandas packages in Python to read the dataset. Our
dataset is presented asa ‘.csv’ file extension.

RajaRajeswari College of Engineering, Bangalore46

Shanlax

International Journal of Arts, Science and Humanities

Pre-processing
	 Data pre-processing is the method of deleting undesirable data from the dataset. Operations
for transforming pre-processed data are used to transform the dataset into a structure suitable for
machine learning. Missing data removal: In this process, the null values such as missing values
and Nan values are replaced by 0.Encoding Categorical data: That categorical data is defined as
variables with a finite set of label values. Feature selection: In our process, we have to implement the
feature selection such as principle component analysis (PCA).The Principle Component Analysis
is an unsupervised learning the algorithm that is used for the dimensionality reduction in machine
learning[16]. It is statistical process that converts the observations of correlated features into group
of linearly uncorrelated features with the aid of orthogonal transformation.

Results

 Figure 2 Data Selection
	 Figure 2. shows the data selection is the process of selecting the data for detecting the malware.

 Figure 3 Preprocessing
	 Figure 3 shows the data pre-processing is the method of deleting undesirable data from the
dataset. Operations for transforming pre-processed data are used to transform the dataset into a
structure suitable for machine learning.

Conclusions
	 In this research, we offer a unique technique to malware detection according to the foundation
of combining grey-scale photos to represent malware characteristics and an auto-encoder network

47http://www.shanlaxjournals.com

Shanlax

International Journal of Arts, Science and Humanities

to create a classification model to recognise malware. The investigational findings demonstrate
the practicality of our suggested method of transforming the bytecode of all software methods
into a greyscale picture to denote the characteristics in a software sample. Our technology detects
infection accurately than solutions that use conventional neural network algorithms. In relationship
to previous malware detection systems based on deep learning models, our solution requires shorter
training and detection time. In the future, we will inspect more efficient procedures for encoding
malware feature photos, as well as focus our study on the data pre-processing step to investigate
newer malware detection approaches.

References
1.	 	(2019). China Internet Security Research Report. (Nov. 15, 2020). [Online]. Available: https://

www.cert.org.cn/publish/main/upload/ File/2019Annual%20report.pdf
2.	 	Ye, Y., Li, T., Adjeroh, D., &Iyengar, S. S. (2017). A survey on malware detection using data

mining techniques. ACM Computing Surveys (CSUR), 50(3), 1-40.
3.	 	S. Rastogi, K. Bhushan, and B. B. Gupta, ‘‘Android applications repackaging detection

techniques for smartphone devices,’’ Proc. Comput. Sci., vol. 78, pp. 26–32, Jan. 2016.
4.	 	Pandita, R., Xiao, X., Yang, W., Enck, W., &Xie, T. (2013). {WHYPER}: Towards Automating

Risk Assessment of Mobile Applications. In 22nd USENIX Security Symposium (USENIX
Security 13) (pp. 527-542).

5.	 	Klieber, W., Flynn, L., Bhosale, A., Jia, L., & Bauer, L. (2014, June). Android taint flow analysis
for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of
the Art in Java Program Analysis (pp. 1-6).

6.	 	Wang, Z., Cai, J., Cheng, S., & Li, W. (2016, September). DroidDeepLearner: Identifying
Android malware using deep learning. In 2016 IEEE 37th Sarnoff symposium (pp. 160-165).
IEEE.

7.	Schultz, M. G., Eskin, E., Zadok, F., &Stolfo, S. J. (2000, May). Data mining methods for
detection of new malicious executables. In Proceedings 2001 IEEE Symposium on Security and
Privacy. S&P 2001 (pp. 38-49). IEEE in Proc. IEEE Symp. Secur. Privacy. (S&P), May 2001,
p. 2001, doi: 10.1109/SECPRI.2001.924286.

8.	 	B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy, ‘‘Android permissions:
A perspective combining risks and benefits,’’ in Proc. 17th ACM Symp. Access Control Models
Technol. (SACMAT), 2012, pp. 13–22.

9.	C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, ‘‘Quick and accurate Android malware
detection based on sensitive Apis,’’ in Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT),
Aug. 2018, pp. 143–148.

10.	H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, ‘‘ANASTASIA: ANdroidmAlware detection
using STaticanalySIs of applications,’’ in Proc. 8th IFIP Int. Conf. New Technol., Mobility
Secur. (NTMS), Nov. 2016, pp. 1–5.

11.	E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and G. Stringhini,
‘‘MaMaDroid: Detecting Android malware by building Markov chains of behavioral models,’’
2016, arXiv:1612.04433.

12.	W. Li, Z. Wang, J. Cai, and S. Cheng, ‘‘An Android malware detection approach using weight-
adjusted deep learning,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Mar. 2018, pp.
437–441, doi: 10.1109/ICCNC.2018.8390391.

13.	B. Amos, H. Turner, and J. White, ‘‘Applying machine learning classifiers to dynamic Android
malware detection at scale,’’ in Proc. 9th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC), Jul. 2013, pp. 1666–1671.

RajaRajeswari College of Engineering, Bangalore48

Shanlax

International Journal of Arts, Science and Humanities

14.	S. Nari and A. A. Ghorbani, ‘‘Automated malware classification based on network behavior,’’
in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Jan. 2013, pp. 642–647.

15.	G. Cabau, M. Buhu, and C. P. Oprisa, ‘‘Malware classification based on dynamic behavior,’’
in Proc. 18th Int. Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), Sep. 2016,
pp. 315–318.

16.	W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N. Sheth, ‘‘TaintDroid: An information-flow tracking system for realtime privacy monitoring
on smartphones,’’ ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 1–29, Jun. 2014.

17.	Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). Detecting Android malicious apps
and categorizing benign apps with ensemble of classifiers. Future generation computer systems,
78, 987-994.

