ON SUPRA G*B Ω - CLOSED SETS IN SUPRA TOPOLOGICAL SPACES

Article Particulars:

Received: 13.01.2018

Accepted: 17.01.2018

Published: 20.01.2018

P.PRIYADHARSINI

Assistant Professor, Department of Mathematics Vivekanandha College of Arts and Sciences for Women (Autonomous) Elayampalayam, Namakkal, Tamil Nadu, India

A.PARVATHI

Professor, Department of Mathematics Avinashilingam Institute for Home Science and Higher Education for Women University Coimbatore, Tamil Nadu, India

Abstract

The aim of this paper is to introduce the concepts of supra generalized star $b\omega$ - closed sets and study their basic properties in supra topological spaces. **Keywords:** supra $g^*b\omega$ - closed sets and supra $g^*b\omega$ - open sets.

Mathematics Subject Classification: 54A10.

Introduction

Levine [3] introduced the concept of generalized closed sets in topological spaces. Andrijevic [1] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. In 1982, Hdeib [2] introduced the notions of ω - closed set. In 2012, A.Parvathi et al. [5] introduced g*b ω - closed sets in topological spaces. In 1983, A.S.Mashhour et al [4] introduced the notion of supra topological spaces and studied S-S continuous functions and S* - continuous functions. In 2010, O.R.Sayed and Takashi Noiri [6] introduced supra b - open sets and supra b - continuity on topological spaces. In this paper, we introduce the concepts of supra generalized star b ω - closed sets, supra generalized star b ω - open sets and study their basic properties in supra topological spaces.

Preliminaries

Definition 1.1 [4, 6] A subfamily μ of X is said to be a supra topology on X if

- X, φ ∈ μ
- if $A_i \in \mu$ for all i, then $\cup A_i \in \mu$

The pair (X, μ) is called supra topological space. The elements of μ are called supra open sets in (X, μ) and complement of a supra open set is called a supra closed set.

Definition 1.2 [4] The supra closure of a set A is defined as $cl^{\mu}(A) = \cap \{B: B \text{ is supra closed and } A \subseteq B\}$ and the supra interior of a set A is defined as $int^{\mu}(A) = \cup \{B: B \text{ is supra open and } A \supseteq B\}$.

Throughout this paper we shall denote by (X, μ) a supra topological space. For any subset $A \subseteq X$, $int^{\mu}(A)$ and $cl^{\mu}(A)$ denote the supra interior of A and the supra closure of A with respect to μ .

We shall require the following known definitions:

Definition 2.1 [4] Let (X, μ) be a topological spaces. A subset A of X is called

- supra semi open if $A \subseteq cl^{\mu}(int^{\mu}(A))$ and supra semi closed if $int^{\mu}(cl^{\mu}(A)) \subseteq A$
- supra pre open if $A \subseteq int^{\mu}(cl^{\mu}(A))$ and supra pre closed if $cl^{\mu}(int^{\mu}(A)) \subseteq A$
- supra r open if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)))$ and supra r closed if $cl^{\mu}(int^{\mu}(cl^{\mu}(A))) \subseteq A$
- supra regular open if $A = int^{\mu}(cl^{\mu}(A))$ and supra regular closed if $A = cl^{\mu}(int^{\mu}(A))$
- supra b open if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$ and supra b - closed if $cl^{\mu}(int^{\mu}(A)) \cap int^{\mu}(cl^{\mu}(A)) \subseteq A$.

Shanlax International Journal of Arts, Science and Humanities

Let (X,μ) or simply X denote a supra topological space. For any subset $A \subseteq X$, the intersection of all supra semi closed (resp. supra pre closed, supra α - closed, supra regular closed, supra b closed) sets containing A is called the *supra semi closure* (resp. *supra pre closure, supra \alpha closure, supra regular closure, supra b - closure*) of A, denoted by $scl^{\mu}(A)$ (resp. $pcl^{\mu}(A)$, $\alpha cl^{\mu}(A)$, $rcl^{\mu}(A)$, $bcl^{\mu}(A)$). The union of all semi open (resp. pre open, α -open, regular open, b-open) sets contained in A is called the *supra semi interior* (resp. *supra pre interior, supra \alpha - interior, supra regular interior, supra b - interior*) of A, denoted by $sint^{\mu}(A)$ (resp. $pint^{\mu}(A)$, $\alpha int^{\mu}(A)$, $rint^{\mu}(A)$, $bint^{\mu}(A)$).

Definition 2.2 [4] Let (X, μ) be a supra topological space. A subset A of X is called

- Supra generalized closed (briefly g^μ closed) if cl^μ(A) ⊆ U whenever A ⊆ U and U is supra open in (X, μ).
- Supra α generalized closed (briefly αg^μ closed) if αcl^μ(A) ⊆ U whenever A ⊆ U and U is supra open in (X, μ).
- Supra generalized semi closed (briefly gs^μ closed) if scl^μ(A) ⊆ U whenever A ⊆ U and U is supra open in (X, μ).

Supra generalized star b omega - Closed Sets Definition 3.1

A set A of a supra topological space (X, μ) is called *supra generalized star b omega closed* (briefly, $g^*b\omega^{\mu}$ - closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra gs - open in (X, τ) . The set of all $g^*b\omega^{\mu}$ - closed sets in X is denoted by $G^*b\omega^{\mu}C(X)$.

Example 3.2: Let X = {a, b, c} with the topology $\mu = \{\varphi, X, \{a, b\}, \{b, c\}\}$. The subsets {a}, {b}, {c}, {a, b}, {b, c} and {a, c} are $g^*b\omega^{\mu}$ - closed.

Theorem 3.3: Every supra closed set is $g^*b\omega^{\mu}$ - closed.

Proof: Let $A \subseteq U$ and U be gs^{μ} - open in X. Since A is supra closed in X and $bcl^{\mu}(A) \subseteq cl^{\mu}(A)$, $bcl^{\mu}(A) \subseteq U$. Therefore A is $g^*b\omega^{\mu}$ - closed.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.4 Let X = {a, b, c} with the topology μ = { ϕ , X, {a, b}, {b, c}}. The subsets {a}, {b}, {c} and {a, c} are g*b ω^{μ} - closed but not supra closed.

Theorem 3.5 Every supra semi closed set is $g^*b\omega^{\mu}$ - closed.

Proof: Let $A \subseteq U$, where U is gs^{μ} - open. Since A is supra semi closed and $bcl^{\mu}(A) \subseteq scl^{\mu}(A)$, $bcl^{\mu}(A) \subseteq U$. Hence A is a $g^*b\omega^{\mu}$ - closed set in X.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.6: In example 3.4, the subsets {b}, {a, b}, {b, c} and {a, c} are $g^*b\omega^{\mu}$ - closed sets but not supra semi closed.

Theorem 3.7: Every supra α - closed set is g*b ω^{μ} - closed.

Proof: Let $A \subseteq U$ and U be gs^{μ} - open in X. Since A is supra α - closed in X, $\alpha cl^{\mu}(A) = A \subseteq U$ and $bcl^{\mu}(A) \subseteq \alpha cl^{\mu}(A)$, $bcl^{\mu}(A) \subseteq U$. Therefore A is $g^*b\omega^{\mu}$ - closed.

The converse of the above theorem is not true in general as can be seen from the following example.

Vol. 5 No. 3 January 2018 ISSN: 2321-788X UGC Approval No: 43960 Impact Factor: 2.114

Example 3.8: In example 3.4, the subsets {b}, {a, b}, {b, c} and {a, c} are $g^*b\omega^{\mu}$ - closed sets but not supra α - closed.

Theorem 3.9: Every supra pre closed set is $g^*b\omega^{\mu}$ - closed.

Proof: Let $A \subseteq U$ and U be gs^{μ} , open in X. Since A is supra pre closed in X and $bcl^{\mu}(A) \subseteq pcl^{\mu}(A)$, $bcl^{\mu}(A) \subseteq U$. Therefore A is $g^*b\omega^{\mu}$ - closed.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.10: In example 3.4, the subsets $\{a, b\}$ and $\{b, c\}$ are $g^*b\omega^{\mu}$ - closed sets but not supra pre closed.

Theorem 3.11: Every supra regular closed set is $g^*b\omega^{\mu}$ - closed.

Proof: Let $A \subseteq U$ and U be gs^{μ} - open in X. Since A is supra regular closed in X and $bcl^{\mu}(A) \subseteq rcl^{\mu}(A)$, $bcl^{\mu}(A) \subseteq U$. Therefore A is $g^*b\omega^{\mu}$ - closed.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.12: In example 3.4, the subsets {a}, {b}, {c}, {a, b} {a, c} and {b, c} are $g^*b\omega^{\mu}$ - closed sets but not supra regular closed.

Theorem 3.13: Every supra b - closed set is $g^*b\omega^{\mu}$ - closed.

Proof: Let $A \subseteq U$ and U be gs^{μ} - open in X. Since A is supra b - closed in X, $bcl^{\mu}(A) = A \subseteq U$. Therefore A is $g^*b\omega^{\mu}$ - closed.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.14: In example 3.4, the subsets {a, b} and {b, c} are $g^*b\omega^{\mu}$ - closed sets but not supra b - closed.

Remark 3.15: The following examples show that the concept of g^{μ} - closed and $g^*b\omega^{\mu}$ - closed sets are independent.

Example 3.16: Let X = {a, b, c} with the topology $\mu = \{\varphi, X, \{a\}, \{a, b\}\}$. The subset {a, c} is g^{μ} - closed but not g*b ω^{μ} - closed.

Example 3.17: In example 3.16, the subset {b} is $g^*b\omega^{\mu}$ - closed but not g^{μ} - closed.

Remark 3.18: The following examples show that the concept of αg^{μ} - closed and g*b ω^{μ} - closed sets are independent.

Example 3.19: In example 3.16, the subset {a, c} is αg^{μ} - closed but not g*b ω^{μ} - closed.

Example 3.20: Let X = {a, b, c} with the topology $\mu = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. The subsets {a} and {b} are $g^*b\omega^{\mu}$ - closed but not αg^{μ} - closed.

Remark 3.21: The following examples show that the concept of gs^{μ} - closed and $g^*b\omega^{\mu}$ - closed sets are independent.

Example 3.22: In example 3.20, the subset {a, c} is gs^{μ} - closed but not $g^*b\omega^{\mu}$ - closed.

Shanlax International Journal of Arts, Science and Humanities

Example 3.23: Let X = {a, b, c, d} with the topology μ = { ϕ , X, {a, b}, {a, b, c}, {a, b, d}. The subsets {a}, {b}, {a, c}, {a, d}, {b, c} and {b, d} are g*b ω^{μ} - closed sets but not gs^{μ} - closed.

Remark 3.24 The following relation has been proved for $g^*b\omega^{\mu}$ - closed sets.

Theorem 3.25 If A is gs^{μ} - open and $g^*b\omega^{\mu}$ - closed then A is supra b - closed.

Proof: Suppose that A is gs^{μ} - open and $g^*b\omega^{\mu}$ - closed. Since A \subseteq A and A is $g^*b\omega^{\mu}$ - closed in X, $bcl^{\mu}(A) \subseteq A$. But always A $\subseteq bcl^{\mu}(A)$. Therefore bcl(A) = A. Consequently A is supra b - closed.

Theorem 3.26 If A is $g^*b\omega^{\mu}$ - closed and gs^{μ} - open and F is supra b - closed in X then A \cap F is supra b - closed in X.

Proof: Since A is $g^*b\omega^{\mu}$ - closed and gs^{μ} - open in X, we have A is supra b - closed (by Theorem 3.25). Since F is supra b - closed in X then A \cap F is supra b - closed in X.

Theorem 3.27 The union of two $g^*b\omega^{\mu}$ - closed sets is $g^*b\omega^{\mu}$ - closed.

Proof: Let A and B are two $g^*b\omega^{\mu}$ - closed sets in X. Let $A \cup B \subseteq U$ and U be supra gs - open in X. Since A and B are $g^*b\omega^{\mu}$ - closed sets, $bcl^{\mu}(A) \subseteq U$ and $bcl^{\mu}(B) \subseteq U$. Therefore $[bcl^{\mu}(A)] \cup [bcl^{\mu}(B)] \subseteq U$. Since $bcl^{\mu}(A \cup B) \subseteq U$. Hence $A \cup B$ is $g^*b\omega^{\mu}$ - closed.

Theorem 3.28 If A and B are $g^*b\omega^{\mu}$ - closed sets then A \cap B is $g^*b\omega^{\mu}$ - closed.

Proof: Given that A and B are two $g^*b\omega^{\mu}$ - closed sets in X. Let $A \cap B \subseteq U$ and U be supra gs open in X. Since A and B are $g^*b\omega^{\mu}$ - closed sets, $bcl^{\mu}(A) \subseteq U$ and $bcl^{\mu}(B) \subseteq U$. Therefore $[bcl^{\mu}(A)] \cap [bcl^{\mu}(B)] \subseteq U$. Since $bcl^{\mu}(A \cap B) \subset [bcl^{\mu}(A)] \cap [bcl^{\mu}(B)]$, $bcl^{\mu}(A \cap B) \subseteq U$ Hence $A \cap B$ is $g^*b\omega^{\mu}$ - closed.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.29 Let X = {a, b, c, d} with the topology $\mu = \{\varphi, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}$. Then Let A = {a} and B = {a, b}. Then A \cap B = {a} is g*b ω^{μ} - closed, A = {a} is g*b ω^{μ} - closed but B = {a, b} is not g*b ω^{μ} - closed.

Theorem 3.30 Let A be a subset of a topological space (X, μ) . If A is $g^*b\omega^{\mu}$ - closed then $bcl^{\mu}(A) \land A$ contains no nonempty gs^{μ} - closed set.

Proof: Suppose that A is $g^*b\omega^{\mu}$ - closed. Let F be a gs^{μ} - closed set such that $F \subseteq bcl^{\mu}(A) \setminus A$. We shall show that $F = \varphi$. Since $F \subseteq bcl^{\mu}(A) \setminus A$, we have $A \subseteq F^c$ and $F \subseteq bcl^{\mu}(A)$. Since F is a gs^{μ} - closed set, we have F^c is gs^{μ} - open. Since A is $g^*b\omega^{\mu}$ - closed, we have $bcl^{\mu}(A) \subseteq F^c$. Thus $F \subseteq [bcl^{\mu}(A)]^c = X \setminus [bcl^{\mu}(A)]$. Hence $F \subseteq [bcl^{\mu}(A)] = \varphi$. Therefore $F = \varphi$. Hence $bcl^{\mu}(A) \setminus A$ contains no nonempty gs^{μ} - closed sets.

Theorem 3.31 Let A be a $g^*b\omega^{\mu}$ - closed set. Then A is supra b - closed in X if and only if $bcl^{\mu}(A) \setminus A$ is gs^{μ} - closed in X.

Proof: Suppose that A is $g^*b\omega^{\mu}$ - closed. Let A be supra b - closed. Then $bcl^{\mu}(A) = A$. Therefore $bcl^{\mu}(A) \setminus A = \varphi$ is gs - closed in X.

Conversely, suppose that A is $g^*b\omega^{\mu}$ - closed and $bcl^{\mu}(A) \setminus A$ is gs^{μ} - closed. Since A is $g^*b\omega^{\mu}$ - closed, $bcl^{\mu}(A) \setminus A$ contains no nonempty gs^{μ} - closed set (by Theorem 3.56). Since $bcl^{\mu}(A) \setminus A$ is $gs^{\mu} \cdot \text{closed}$, $bcl^{\mu}(A) \setminus A = \varphi$. Then $bcl^{\mu}(A) = A$. Hence A is supra b - closed.

Theorem 3.32 Let A and B be subsets such that $A \subseteq B \subseteq bcl^{\mu}(A)$. If A is $g^*b\omega^{\mu}$ - closed then B is $g^*b\omega^{\mu}$ - closed.

Proof: Let A and B be subsets such that $A \subseteq B \subseteq bcl^{\mu}(A)$. Suppose that A is $g^*b\omega^{\mu}$ - closed. Let B $\subseteq U$ and U be gs^{μ} - open in X. Since $A \subseteq B$ and $B \subseteq U$, $A \subseteq U$. Since A is $g^*b\omega^{\mu}$ - closed, $bcl^{\mu}(A) \subseteq U$. Since $B \subseteq bcl^{\mu}(A)$, $bcl^{\mu}(B) \subseteq bcl^{\mu}[bcl^{\mu}(A)] = bcl^{\mu}(A) \subseteq U$. Therefore B is $g^*b\omega^{\mu}$ - closed.

Corollary 3.33 If A is $g^*b\omega^{\mu}$ - closed and $A \subseteq B \subseteq bcl^{\mu}(A)$ then $bcl^{\mu}(B) \setminus B$ contains no nonempty gs^{μ} - closed set.

Supra generalized star b omega - Open Sets

Definition 4.1 A set A of a topological space (X, μ) is called *supra generalized star b omega open* (briefly, $g^*b\omega^{\mu}$ - open) if and only if A^c is $g^*b\omega^{\mu}$ - closed in X.

Theorem 4.2 A subset A of a topological space (X, μ) is $g^*b\omega^{\mu}$ - open if and only if $F \subseteq bint^{\mu}$ (A) whenever $F \subseteq A$ and F is gs^{μ} - closed in X.

Proof: Suppose that A is $g^*b\omega^{\mu}$ - open. Let $F \subseteq A$ and F be gs^{μ} - closed. Then $A^c \subseteq F^c$ and F^c is gs^{μ} - open. Since A is $g^*b\omega^{\mu}$ - open, A^c is $g^*b\omega^{\mu}$ - closed. Hence $bcl^{\mu}(A^c) \subseteq F^c$. Since $bcl^{\mu}(A^c) = [bint^{\mu}(A)]^c$, $[bint^{\mu}(A)]^c \subseteq F^c$. Hence $F \subseteq bint^{\mu}(A)$.

Conversely, suppose that $F \subseteq bint^{\mu}(A)$ whenever $F \subseteq A$ and F is gs^{μ} - closed in X. Let U be gs^{μ} - open in X and $A^{c} \subseteq U$. Then U^{c} is gs^{μ} - closed and $U^{c} \subseteq A$. Hence by assumption $U^{c} \subseteq bint^{\mu}(A)$ Therefore $[bint^{\mu}(A)]^{c} \subseteq U$. That is $bcl^{\mu}(A^{c}) \subseteq U$. Therefore A^{c} is $g^{*}b\omega^{\mu}$ - closed. Hence A is $g^{*}b\omega^{\mu}$ - open.

Theorem 4.3 If a subset A is $g^*b\omega^{\mu}$ - closed in X then $bcl^{\mu}(A) \setminus A$ is $g^*b\omega^{\mu}$ - open.

Proof: Suppose that A is $g^*b\omega^{\mu}$ - closed in X. Let $F \subseteq bcl^{\mu}(A) \setminus A$ and F be gs^{μ} - closed. Since A is $g^*b\omega^{\mu}$ - closed, $bcl^{\mu}(A) \setminus A$ does not contain nonempty gs^{μ} - closed sets (by Theorem 3.30). Since $F \subseteq bcl^{\mu}(A) \setminus A$, $F = \varphi$. Since $\varphi \subseteq bint^{\mu}[bcl^{\mu}(A) \setminus A]$, $F \subseteq bint^{\mu}[bcl^{\mu}(A) \setminus A]$ Hence $bcl^{\mu}(A) \setminus A$ is $g^*b\omega^{\mu}$ - open.

Theorem 4.4 For each $x \in X$, the singleton $\{x\}$ is either gs^{μ} - closed or $g^*b\omega^{\mu}$ - open.

Shanlax International Journal of Arts, Science and Humanities

Proof: Let $x \in X$ and suppose that $\{x\}$ is not gs^{μ} - closed. Then $X \setminus \{x\}$ is not gs^{μ} - open. Consequently, X is the only gs^{μ} - open set containing the set $X \setminus \{x\}$. Therefore $X \setminus \{x\}$ is $g^*b\omega^{\mu}$ - closed. Hence $\{x\}$ is $g^*b\omega^{\mu}$ - open.

References

- 1. Andrijevic, D., On b-open sets, Mat. Vesnik., 48, no. 1-2, 59 64, 1996.
- Hdeib, H. Z., "ω closed mappings," Revista Colombiana de Matematicas, vol. 16, no. 1 2, 65 78, 1982.
- 3. Levine. N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, 89 96, 1970.
- 4. Mashhour, A.S., Allam, A.A., Mahamoud, F.S. and Khedr, F.H., On supra topological spaces, Indian J.Pure and Appl. Math., No. 4, 14, 502 510, 1983.
- 5. Parvathi, A, Priyadharsini, P. and Chandrika, G. K., On $g^*b\omega$ closed sets in Topological spaces, Int. J. Adv. Sci. and Tech. Research, 2(6), 318 329, 2012.
- 6. Sayed, O.R. and Takashi Noiri, on supra b open sets and supra b -Continuity on topological spaces, European Journal of pure and applied Mathematics, 3(2), 295 302, 2010.