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Introduction

Levine [3] introduced the concept of generalized closed sets in topological spaces.  Andrijevic
[1] introduced a new class of generalized open sets in a topological space, the so-called b-open
sets.  In 1982, Hdeib [2] introduced the notions of ω - closed set. In 2012, A.Parvathi et al. [5]
introduced g*b - closed sets in topological spaces. In 1983, A.S.Mashhour et al [4] introduced
the notion of supra topological spaces and studied S-S continuous functions and S* - continuous
functions. In 2010, O.R.Sayed and Takashi Noiri [6] introduced supra b - open sets and supra b -
continuity on topological spaces. In this paper, we introduce the concepts of supra generalized
star b - closed sets, supra generalized star b - open sets and study their basic properties in
supra topological spaces.

Preliminaries
Definition 1.1 [4, 6] A subfamily of  X is said to be a supra topology on X if
 X, ∈
 if Ai ∈ for all i, then ∪Ai ∈

The pair (X, ) is called supra topological space.  The elements of are called supra open sets
in (X, ) and complement of a supra open set is called a supra closed set.

Definition 1.2 [4] The supra closure of a set A is defined as ( ) = ∩{B: B is supra closed and A⊆ B} and the supra interior of a set A is defined as ( ) = ∪{ B : B is supra open and A ⊇ B}.
Throughout this paper we shall denote by (X, ) a supra topological space. For any subset

A  X, ( ) and ( ) denote the supra interior of A and the supra closure of A with respect to
.

We shall require the following known definitions:

Definition 2.1 [4] Let (X, ) be a topological spaces. A subset A of X is called
 supra semi - open if A  ( (A)) and supra semi - closed if ( (A))  A
 supra pre open if A  ( (A)) and supra pre closed if ( (A))  A
 supra  - open if A  ( ( (A))) and supra  - closed if ( ( (A)))  A
 supra regular open if A = ( (A)) and supra regular closed if A = ( (A))
 supra b - open if A  ( (A)) ∪ ( (A)) and

supra b - closed if ( (A)) ∩ ( (A))  A.
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Let (X, ) or simply X denote a supra topological space. For any subset A  X, the intersection
of all supra semi closed (resp. supra pre closed, supra  - closed, supra regular closed, supra b -
closed) sets containing A is called the supra semi closure (resp. supra pre closure, supra  -
closure, supra regular closure, supra b - closure) of A, denoted by (A) (resp. (A),  (A),

(A), (A)). The union of all semi open (resp. pre open, -open, regular open, b-open) sets
contained in A is called the supra semi interior (resp. supra pre interior, supra  - interior, supra
regular interior, supra b - interior) of A, denoted by (A) (resp. (A),  (A), (A),

(A)).

Definition 2.2 [4] Let (X, ) be a supra topological space.  A subset A of X is called
 Supra generalized closed (briefly - closed) if (A)  U whenever A  U and U is supra

open in (X, ).
 Supra generalized closed (briefly - closed) if  (A)  U whenever A  U and U is supra

open in (X, ).
 Supra generalized semi closed (briefly - closed) if (A)  U whenever A  U and U is

supra open in (X, ).

Supra generalized star b omega - Closed Sets
Definition 3.1

A set A of a supra topological space (X, ) is called supra generalized star b omega closed
(briefly, g*b - closed) if (A)  U whenever A  U and U is supra gs - open in (X, ).
The set of all g*b - closed sets in X is denoted by G*b C(X).

Example 3.2: Let X = {a, b, c} with the topology = {φ, X, {a, b}, {b, c}}. The subsets {a}, {b},
{c}, {a, b}, {b, c} and {a, c} are g*b - closed.

Theorem 3.3: Every supra closed set is g*b - closed.

Proof: Let A  U and U be - open in X.  Since A is supra closed in X and (A)  (A),
(A)  U.  Therefore A is g*b - closed.
The converse of the above theorem is not true in general as can be seen from the following

example.

Example 3.4 Let X = {a, b, c} with the topology = {φ, X, {a, b}, {b, c}}. The subsets {a}, {b}, {c}
and {a, c} are g*b - closed but not supra closed.

Theorem 3.5 Every supra semi closed set is g*b - closed.

Proof: Let A  U, where U is - open.  Since A is supra semi closed and (A)  (A),
(A)  U.  Hence A is a g*b - closed set in X.
The converse of the above theorem is not true in general as can be seen from the following

example.

Example 3.6: In example 3.4, the subsets {b}, {a, b}, {b, c} and {a, c} are g*b - closed sets but
not supra semi closed.

Theorem 3.7: Every supra - closed set is g*b - closed.

Proof: Let A  U and U be - open in X.  Since A is supra - closed in X, (A) = A  U and
(A)  (A), (A)  U.  Therefore A is g*b - closed.
The converse of the above theorem is not true in general as can be seen from the following

example.
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Example 3.8: In example 3.4, the subsets {b}, {a, b}, {b, c} and {a, c} are g*b - closed sets but
not supra - closed.

Theorem 3.9: Every supra pre closed set is g*b - closed.

Proof: Let A  U and U be - open in X.  Since A is supra pre closed in X and (A)  (A),
(A)  U.  Therefore A is g*b - closed.
The converse of the above theorem is not true in general as can be seen from the following

example.

Example 3.10: In example 3.4, the subsets {a, b} and {b, c} are g*b - closed sets but not supra
pre closed.

Theorem 3.11: Every supra regular closed set is g*b - closed.

Proof: Let A  U and U be - open in X.  Since A is supra regular closed in X and (A) 
(A), (A)  U.  Therefore A is g*b - closed.
The converse of the above theorem is not true in general as can be seen from the following

example.

Example 3.12: In example 3.4, the subsets {a}, {b}, {c}, {a, b} {a, c} and {b, c} are g*b - closed
sets but not supra regular closed.

Theorem 3.13: Every supra - closed set is g*b - closed.

Proof: Let A  U and U be - open in X.  Since A is supra - closed in X, (A) = A  U.
Therefore A is g*b - closed.

The converse of the above theorem is not true in general as can be seen from the following
example.

Example 3.14: In example 3.4, the subsets {a, b} and {b, c} are g*b - closed sets but not supra
- closed.

Remark 3.15: The following examples show that the concept of - closed and g*b - closed
sets are independent.

Example 3.16: Let X = {a, b, c} with the topology = {φ, X, {a}, {a, b}}. The subset {a, c} is -
closed but not g*b - closed.

Example 3.17: In example 3.16, the subset {b} is g*b - closed but not - closed.

Remark 3.18: The following examples show that the concept of - closed and g*b - closed
sets are independent.

Example 3.19: In example 3.16, the subset {a, c} is - closed but not g*b - closed.

Example 3.20: Let X = {a, b, c} with the topology = {φ, X, {a}, {b}, {a, b}}. The subsets {a} and
{b} are g*b - closed but not - closed.

Remark 3.21: The following examples show that the concept of - closed and g*b - closed
sets are independent.

Example 3.22: In example 3.20, the subset {a, c} is - closed but not g*b - closed.
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Example 3.23: Let X = {a, b, c, d} with the topology = {φ, X, {a, b}, {a, b, c}, {a, b, d}. The
subsets {a}, {b}, {a, c}, {a, d}, {b, c} and {b, d} are g*b - closed sets but not - closed.

Remark 3.24 The following relation has been proved for g*b - closed sets.

Theorem 3.25 If A is - open and g*b - closed then A is supra b - closed.

Proof: Suppose that A is - open and g*b - closed.  Since A  A and A is g*b - closed in X,
(A)  A. But always A  (A). Therefore bcl(A) = A. Consequently A is supra b - closed.

Theorem 3.26 If A is g*b - closed and - open and F is supra b - closed in X then A ∩ F is
supra b - closed in X.

Proof: Since A is g*b - closed and - open in X, we have A is supra b - closed (by Theorem
3.25).  Since F is supra b - closed in X then A ∩ F is supra b - closed in X.

Theorem 3.27 The union of two g*b - closed sets is g*b - closed.

Proof: Let A and B are two g*b - closed sets in X.  Let A ∪ B  U and U be  supra gs - open in X.
Since A and B are g*b - closed sets, (A)  U and (B)  U.  Therefore [ (A)] ∪
[ (B)]  U.  Since (A ∪ B)  U.  Hence A ∪ B is g*b - closed.

Theorem 3.28 If A and B are g*b - closed sets then A ∩ B is g*b - closed.

Proof: Given that A and B are two g*b - closed sets in X.  Let A ∩ B  U and U be supra gs -
open in X.  Since A and B are g*b - closed sets, (A)  U and (B)  U. Therefore [ (A)]∩ [ (B)]  U.  Since (A ∩ B)  [ (A)] ∩ [ (B)], (A ∩ B)  U Hence A ∩ B is g*b -
closed.

The converse of the above theorem is not true in general as can be seen from the following
example.

Example 3.29 Let X = {a, b, c, d} with the topology = {φ, X, {a, b}, {a, b, c}, {a, b, d}. Then Let
A = {a} and B = {a, b}. Then A ∩ B = {a} is g*b - closed, A = {a} is g*b - closed but B = {a, b} is
not g*b - closed.

g*b - closed

- closed

pre - closed

closed

gs - closed

semi closed

regular closed

g - closed

b - closed

g - closed
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Theorem 3.30 Let A be a subset of a topological space (X, ).  If A is g*b - closed then (A)
\ A contains no nonempty - closed set.

Proof: Suppose that A is g*b - closed.  Let F be a - closed set such that F  (A) \ A. We
shall show that F = φ. Since F  (A) \ A, we have A  Fc and F  (A).  Since F is a -
closed set, we have Fc is - open. Since A is g*b - closed, we have (A)  Fc.  Thus F 
[ (A)]c = X \ [ (A)].  Hence F  [ (A)] ∩ [X \ [ (A)]] = φ. Therefore F = φ. Hence

(A) \ A contains no nonempty - closed sets.

Theorem 3.31 Let A be a g*b - closed set.  Then A is supra b - closed in X if and only if (A)
\ A is - closed in X.

Proof: Suppose that A is g*b - closed.  Let A be supra b - closed.  Then (A) = A.  Therefore
(A) \ A = φ is gs - closed in X.
Conversely, suppose that A is g*b - closed and (A) \ A is - closed. Since A is g*b -

closed, (A) \ A contains no nonempty - closed set (by Theorem 3.56).  Since (A) \ A is
- closed, (A) \ A = φ.  Then (A) = A. Hence A is supra b - closed.

Theorem 3.32 Let A and B be subsets such that A  B  (A).  If A is g*b - closed then B is
g*b - closed.

Proof: Let A and B be subsets such that A  B  (A).  Suppose that A is g*b - closed.  Let B
 U and U be - open in X.  Since A  B and B  U, A  U. Since A is g*b - closed, (A) 
U. Since B  (A), (B)  [ (A)] = (A)  U.  Therefore B is g*b - closed.

Corollary 3.33 If A is g*b - closed and A  B  (A) then (B) \ B contains no nonempty
- closed set.

Supra generalized star b omega - Open Sets

Definition 4.1 A set A of a topological space (X, ) is called supra generalized star b omega
open (briefly, g*b - open) if and only if Ac is  g*b - closed in X.

Theorem 4.2 A subset A of a topological space (X, ) is g*b - open if and only if F  (A)
whenever F  A and F is - closed in X.

Proof: Suppose that A is g*b - open. Let F  A and F be - closed.  Then Ac  Fc and Fc is
- open. Since A is g*b - open, Ac is g*b - closed.  Hence (Ac)  Fc.  Since (Ac) =

[ (A)]c, [ (A)]c  Fc.  Hence F  (A).
Conversely, suppose that F  (A) whenever F  A and F is - closed in X.  Let U be
- open in X and Ac  U.  Then Uc is - closed and Uc  A. Hence by assumption Uc 
(A) Therefore [ (A)]c  U.  That is (Ac)  U.  Therefore Ac is g*b - closed.  Hence

A is g*b - open.

Theorem 4.3 If a subset A is g*b - closed in X then (A) \ A is g*b - open.

Proof: Suppose that A is g*b - closed in X. Let F  (A) \ A and F be - closed. Since A is
g*b - closed, (A) \ A does not contain nonempty - closed sets (by Theorem 3.30).  Since
F  (A) \ A, F = φ.  Since φ  [ (A) \ A], F  [ (A) \ A] Hence (A) \ A is
g*b - open.

Theorem 4.4 For each x ∈ X, the singleton {x} is either - closed or g*b - open.
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Proof: Let x ∈ X and suppose that {x} is not - closed. Then X \ {x} is not -open.
Consequently, X is the only - open set containing the set X \ {x}. Therefore X \ {x} is g*b -
closed. Hence {x} is g*b - open.

References
1. Andrijevic, D., On b-open sets, Mat. Vesnik., 48,  no. 1-2, 59 – 64, 1996.
2. Hdeib, H. Z., “ω - closed mappings,” Revista Colombiana de Matematicas, vol. 16, no. 1 - 2, 65 - 78,

1982.
3. Levine. N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, 89 – 96, 1970.
4. Mashhour, A.S.,  Allam, A.A.,  Mahamoud, F.S. and Khedr, F.H., On supra topological spaces, Indian

J.Pure and Appl. Math., No. 4, 14, 502 – 510, 1983.
5. Parvathi, A, Priyadharsini, P. and Chandrika, G. K., On g*b - closed sets in Topological

spaces,Int. J. Adv. Sci. and Tech. Research, 2(6), 318 – 329, 2012.
6. Sayed, O.R.  and Takashi Noiri, on supra b - open sets and supra b –Continuity on topological spaces,

European Journal of pure and applied Mathematics, 3(2), 295 – 302, 2010.


