
Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 85 

ENABLING DATA INTEGRITY PROTECTION IN REGENERATING-CODING-BASED  
CLOUD STORAGE 

 
 Mrs.T.R.Vithya*, Mrs.K.K.Kavitha** & Mrs.V.Ramya*** 

*Assistant Professor  
**HOD/Assistant Professor 

***Research Scholar 
Department of CS, Selvamm College of Arts & Science (Autonomous) Namakkal 

  
Abstract 

To protect outsourced data in cloud storage against corruptions, adding fault tolerance to cloud 
storage, along with efficient data integrity checking and recovery procedures, becomes critical. 
Regenerating codes provide fault tolerance by striping data across multiple servers, while using less 
repair traffic than traditional erasure codes during failure recovery. Therefore, we study the problem of 
remotely checking the integrity of regenerating-coded data against corruptions under a real-life cloud 
storage setting. We design and implement a practical data integrity protection (DIP) scheme for a 
specific regenerating code, while preserving its intrinsic properties of fault tolerance and repair-traffic 
is saving. Our DIP scheme is designed under a mobile Byzantine adversarial model, and enables a client to 
feasibly verify the integrity of random subsets of outsourced data against general or malicious 
corruptions. It works under the simple assumption of thin-cloud storage and allows different parameters 
to be fine-tuned for a performance-security trade-off. We implement and evaluate the overhead of our 
DIP scheme in a real cloud storage test bed under different parameter choices. We further analyze the 
security strengths of our DIP scheme via mathematical models. We demonstrate that remote integrity 
checking can be feasibly integrated into regenerating codes in practical deployment. 

Index Terms—remote data checking secure and trusted storage systems, implementation, 
experimentation 
 
Introduction 

Cloud storage offers an on-demand data outsourcing service model, and is gaining 
popularity due to its elasticity and low maintenance cost. However, security concerns arise 
when data storage is outsourced to third party cloud storage providers. It is desirable to enable 
cloud clients to verify the integrity of their outsourced data, in case their data have been 
accidentally corrupted or maliciously compromised by insider/outsider attacks.  

One major use of cloud storage is long-term archival, which represents a workload that 
is written once and rarely read. While the stored data are rarely read, it remains necessary to 
ensure its integrity for disaster recovery or compliance with legal requirements. Since it is 
typical to have a huge amount of archived data, whole-file checking becomes prohibitive. Proof 
of retrievability (POR) and proof of data possession (PDP) have thus been proposed to verify the 
integrity of a large file by spot checking only a fraction of the file via various cryptographic 
primitives. 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 86 

Suppose that we outsource storage to a server, which could be a storage site or a 
cloud-storage provider. If we detect corruptions in our outsourced data (e.g., when a server 
crashes or is compromised), then we should repair the corrupted data and restore the original 
data. However, putting all data in a single server is susceptible to the single point- of-failure 
problem and vendor lock-ins. As suggested in a plausible solution is to stripe data across 
multiple servers. Thus, to repair a failed server, we can  

1) Read data from the other surviving servers,  
2) Reconstruct the corrupted data of the failed server, and  
3) Write the reconstructed data to a new server.  
POR and PDP are originally proposed for the single-server case. MR-PDP and HAIL 

extend integrity checks to a multi server setting using replication and erasure coding, 
respectively. In particular, erasure coding (e.g., Reed- Solomon codes) has a lower storage 
overhead than replication under the same fault tolerance level. 

Field measurements show that large-scale storage systems commonly experience 
disk/sector failures, some of which can result in permanent data loss. For example, the 
annualized replacement rate (ARR) for disks in production storage systems is around 2-4 
percent. Data loss events are also found in commercial cloud-storage services. With the 
exponential growth of archival data, a small failure rate can imply significant data loss in 
archival storage. This motivates us to explore high performance recovery so as to reduce the 
window of vulnerability. Regenerating codes have recently been proposed to minimize repair 
traffic (i.e., the amount of data being read from surviving servers). In essence, they achieve 
this by not reading and reconstructing the whole file during repair as in traditional erasure 
codes, but instead reading a set of chunks smaller than the original file from other surviving 
servers and reconstructing only the lost (or corrupted) data chunks. An open question is, can 
we enable integrity checks atop regenerating codes, while preserving the repair traffic saving 
over traditional erasure codes? A related approach is HAIL, which applies integrity protection 
for erasure codes. It constructs protection data on a per-file basis and distributes the 
protection data across different servers. To repair any lost data during a server failure, one 
needs to access the whole file, and this violates the design of regenerating codes. Thus, we 
need a different design of integrity protection tailored for regenerating codes. 

In this paper, we design and implement a practical data integrity protection (DIP) 
scheme for regenerating-coding based cloud storage. We augment the implementation of 
functional minimum-storage regenerating (FMSR) codes and construct FMSR-DIP codes, which 
allow clients to remotely verify the integrity of random subsets of long-term archival data 
under a multiserver setting. FMSR-DIP codes preserve fault tolerance and repair traffic saving 
as in FMSR codes [15]. Also, we assume only a thin-cloud interface, meaning that servers only 
need to support standard read/write functionalities. This adds to the portability of FMSRDIP 
codes and allows simple deployment in general types of storage services. By combining integrity 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 87 

checking and efficient recovery, FMSR-DIP codes provide a low-cost solution for maintaining 
data availability in cloud storage. 

In summary, we make the following contributions: 
• We design FMSR-DIP codes, which enable integrity protection, fault tolerance, and 

efficient recovery for cloud storage. 
• We export several tunable parameters from FMSRDIP codes, such that clients can make 

a trade-off between performance and security. 
• We conduct mathematical analysis on the security of FMSR-DIP codes for different 

parameter choices. 
• We implement FMSR-DIP codes, and evaluate their overhead over the existing FMSR 

codes through extensive test bed experiments in a cloud-storage environment. We 
evaluate the running times of different basic operations, including Upload, Check, 
Download, and Repair, for different parameter choices. 
 

Related Work 
We briefly summarize the most recent and closely related work here. Further literature 

review can be found in Section 1 of the supplementary file, available online. We consider the 
problem of checking the integrity of static data, which is typical in long-term archival storage 
systems. This problem is first considered under a single server scenario by Juels and Kaliski and 
Ateniese ET all giving rise to the similar notions POR and PDP, respectively. A major limitation 
of the above schemes is that they are designed for a single-server setting. If the server is fully 
controlled by an adversary, then the above schemes can only provide detection of corrupted 
data, but cannot recover the original data. This leads to the design of efficient data checking 
schemes in a multi server setting. By striping redundant data across multiple servers, the 
original files can still be recovered from a subset of servers even if some servers are down or 
compromised. Efficient data integrity checking has been proposed for different redundancy 
schemes, such as replication, erasure coding, and regenerating coding. 

Specifically, although Chen et al. also consider regenerating-coded storage, there are 
key differences with our work. First, their design extends the single-server compact POR 
scheme by Shacham and Waters. However, such direct adaptation inherits some shortcomings 
of the single-server scheme such as a large storage overhead, as the amount of data stored 
increases with a more flexible checking granularity in the scheme of. Second, the storage 
scheme of [6] assumes that storage servers have encoding capabilities for generating encoded 
data, while we consider a thin-cloud setting, where servers only need to support standard 
read/write functionalities for portability and simplicity. The most closely related work to ours 
is HAIL, which stores data via erasure coding. As stated in Section 1, HAIL operates on a per-file 
basis and it is nontrivial to directly apply HAIL to regenerating codes. In addition, our work 
focuses more on the practical issues, such as how different parameters can be adjusted for the 
performance-security trade-off in practical deployment. 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 88 

Existing System 
• The problem of checking the integrity of static data, which is typical in long-term 

archival storage system, is considered. This problem is first considered under a single-
server scenario by Juels and Kaliski and Ateniese et al, giving rise to the similar notions 
POR and PDP, respectively. 

• The existing system design extends the single-server compact POR scheme for 
regenerating-coded storage. 

• HAIL system, which stores data via erasure coding. HAIL operates on a per-file basis and 
it is nontrivial to directly apply HAIL to regenerating codes. 

 
Disadvantages of Existing System 
• A major limitation in the existing system is that they are designed for a single-server 

setting.  
• Efficient data integrity checking has been proposed for different redundancy schemes, 

such as replication erasure coding and regenerating coding. 
• A large storage overhead, as the amount of data stored increases with a more flexible 

checking granularity 
• The storage servers have encoding capabilities for generating encoded data. 

 
Proposed System 
• The aim of our proposed system is to protect outsourced data in cloud storage against 

corruptions, adding fault tolerance to cloud storage, along with efficient data integrity 
checking and recovery procedures, becomes critical.  

• Regenerating codes provide fault tolerance by striping data across multiple servers, 
while using less repair traffic than traditional erasure codes during failure recovery. We 
design and implement a practical data integrity protection (DIP) scheme for a specific 
regenerating code, while preserving its intrinsic properties of fault tolerance and 
repair-traffic saving.  

• Our DIP scheme is designed under a mobile Byzantine adversarial model, and enables a 
client to feasibly verify the integrity of random subsets of outsourced data against 
general or malicious corruptions. It works under the simple assumption of thin-cloud 
storage and allows different parameters to be fine-tuned for a performance-security 
trade-off.  

• We further analyze the security strengths of our DIP scheme via mathematical models. 
We demonstrate that remote integrity checking can be feasibly integrated into 
regenerating codes in practical deployment. 

 
 
 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 89 

Advantages of Proposed System 
• By striping redundant data across multiple servers, the original files can still be 

recovered from a subset of servers even if some servers are down or compromised.  
• A thin-cloud setting is used where servers only need to support standard read/write 

functionalities for portability and simplicity. 
• Different parameters can be adjusted for the performance-security trade-off. 

 
Implementation 
Storage Data in Thin-cloud  

In this module, first we develop a REST-full interface, which include the commands PUT 
and GET. PUT allows writing to a file as a whole (no partial updates), and GET allows reading 
from a selected range of bytes of a file via a range GET request. Our DIP scheme uses only the 
PUT and GET commands to interact with each server. Our thin-cloud setting enables our DIP 
scheme to be portable to general types of storage devices or services, since no implementation 
changes are required on the storage backend. It differs from other “thick-”cloud-storage 
services where servers have computational capabilities and are capable of aggregating the 
proofs of multiple checks. There should not be any limits on the number of possible challenges 
that the client can make, since files can be kept for long-term archival. Also, the challenge size 
should be adjustable with different parameter choices, and this is useful when we want to 
lower the detection rate when the stored data grow less important over time. 
 
Upload Data File and Metadata File 

To reduce the key management overhead, we can derive multiple keys from a single 
secret using key derivation functions, as detailed in prior studies and standards. In addition, to 
relieve the local storage burden, we can encrypt all file keys with a master key, and outsource 
the storage of the encrypted keys to the cloud. Since the files in the cloud are typically of large 
size, we expect that the secret keys only incur a small constant overhead. We also append the 
MACs of all chunks to the metadata. Finally, the metadata is encrypted with ENC and replicated 
to each server to contribute only a small storage overhead. 
 
Download and Decode the Needed Chunks based on FMSR-DIP 

The PRFs off the FMSR-DIP code chunks to form the FMSR code chunks, which are then 
passed to NC Cloud for decoding if they are not corrupted. However, if we have a corrupted 
code chunk, then we can fix it with one of the following criteria. 
 
• Download its AECC parities and apply error correction. Then we verify the corrected 

chunk with its MAC again. 
• Download the code chunks from another server. 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 90 

• A last resort is to download the code chunks from all n servers. We check all rows of 
the chunks including their AECC parities. The rows with a subset of the bytes marked 
correct can be recovered with FMSR codes; the rows with all bytes marked corrupted 
are treated as erasures and will be corrected with AECC. 

• In particular, if there is only one failed server, then instead of trying to download K(n-
k) chunks from any k servers, we download one chunk from all remaining (n – 1) servers 
as in FMSR codes  

 
Row Verification for Downloaded Chunk file 

Our probabilistic row verification in the Check operation. Note that there is a trade-off 
of choosing how many bytes to corrupt. A higher corruption rate means that the adversary can 
corrupt more bytes in a stripe, but the corruption is also easier to be detected by our row 
verification. Our objective is to provide a mathematical framework that analyzes the security 
strength of FMSR-DIP codes for different parameter choices. 
 
System Study 
Feasibility Study 

The feasibility of the project is analyzed in this phase and business proposal is put forth 
with a very general plan for the project and some cost estimates. During system analysis the 
feasibility study of the proposed system is to be carried out. This is to ensure that the proposed 
system is not a burden to the company. For feasibility analysis, some understanding of the 
major requirements for the system is essential. 

Three key considerations involved in the feasibility analysis are  
• Economical feasibility 
• Technical feasibility 
• Social feasibility 

 
Economical Feasibility 

This study is carried out to check the economic impact that the system will have on the 
organization. The amount of fund that the company can pour into the research and 
development of the system is limited. The expenditures must be justified. Thus the developed 
system as well within the budget and this was achieved because most of the technologies used 
are freely available. Only the customized products had to be purchased.  
 
Technical Feasibility 

This study is carried out to check the technical feasibility, that is, the technical 
requirements of the system. Any system developed must not have a high demand on the 
available technical resources. This will lead to high demands on the available technical 
resources. This will lead to high demands being placed on the client. The developed system 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 91 

must have a modest requirement, as only minimal or null changes are required for 
implementing this system.  
 
Social Feasibility 

The aspect of study is to check the level of acceptance of the system by the user. This 
includes the process of training the user to use the system efficiently. The user must not feel 
threatened by the system, instead must accept it as a necessity. The level of acceptance by the 
users solely depends on the methods that are employed to educate the user about the system 
and to make him familiar with it. His level of confidence must be raised so that he is also able 
to make some constructive criticism, which is welcomed, as he is the final user of the system. 
 
Conclusion and Future Work 

Given the popularity of outsourcing archival storage to the cloud, it is desirable to 
enable clients to verify the integrity of their data in the cloud. We design and implement a DIP 
scheme for the FMSR codes under a multiserver setting. We construct FMSR-DIP codes, which 
preserve the fault tolerance and repair traffic saving properties of FMSR codes. To understand 
the practicality of FMSRDIP codes, we analyze the security strength via mathematical modeling 
and evaluate the running time overhead via test bed experiments. We show how FMSR-DIP 
codes trade between performance and security under different parameter settings.  
 
References 

1. H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A Case for Cloud Storage 
Diversity,” Proc. First ACM Symp. Cloud Computing (SoCC ’10), 2010. 

2. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. 
Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,” Comm. 
ACM, vol. 53, no. 4, pp 50-58, 2010. 

3. G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. 
Song, “Remote Data Checking Using Provable Data Possession,” ACM Trans. Information 
and System Security, vol. 14, article 12, May 2011. 

4. K. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability and Integrity Layer for 
Cloud Storage,” Proc. 16th ACM Conf. Computer and Comm. Security (CCS ’09), 2009. 

5. K. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: Theory and 
Implementation,” Proc. ACM Workshop Cloud Computing Security (CCSW ’09), 2009. 

6. B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data Checking for Network 
Coding-Based Distributed Storage Systems,” Proc. ACM Workshop Cloud Computing 
Security (CCSW ’10), 2010. 

7. H.C.H. Chen and P.P.C. Lee, “Enabling Data Integrity Protection in Regenerating-
Coding-Based Cloud Storage,” Proc. IEEE 31st Symp. Reliable Distributed Systems (SRDS 
’12), 2012. 



Vol. 3     No. 2  October 2015    ISSN: 2321 – 788X 

 
Shanlax International Journal of Arts, Science & Humanities 92 

 
8. L. Chen, “NIST Special Publication 800-108,” Recommendation for Key Derivation Using 

Pseudorandom Functions (Revised), http://csrc.nist.gov/publications/nistpubs/800-
108/sp800-108.pdf, Oct. 2009. 

9. R. Curtmola, O. Khan, and R. Burns, “Robust Remote Data Checking,” Proc. ACM Fourth 
Int’l Workshop Storage Security and Survivability (StorageSS ’08), 2008. 

10. R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-Replica Provable 
Data Possession,” Proc. IEEE 28th Int’l Conf. Distributed Computing Systems (ICDCS 
’08), 2008. 

11. A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network Coding 
for Distributed Storage Systems,” IEEE Trans. Information Theory, vol. 56, no. 9, 4539-
4551, Sept. 2010. 

12. D. Ford, F. Labelle, F.I. Popovici, M. Stokel, V.-A. Truong, L. Barroso, C. Grimes, and S. 
Quinlan, “Availability in Globally Distributed Storage Systems,” Proc. Ninth USENIX 
Symp. Operating Systems Design and Implementation (OSDI ’10), Oct. 2010.  

13. O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge Univ. Press, 2001. 
14. O. Goldreich, Foundations of Cryptography: Basic Applications. Cambridge Univ. Press, 

2004.  
15. Y. Hu, H. Chen, P. Lee, and Y. Tang, “NCCloud: Applying Network Coding for the 

Storage Repair in a Cloud-of-Clouds,” Proc. 10th USENIX Conf. File and Storage 
Technologies (FAST ’12), 2012. 

 
 
 
 
 

 
  


