MAGIC SQUARES

Dr.Isola Rajagopalan

Editor, SIJ-ASH

Abstract

Magic squares have intrigued people for thousands of years and in ancient times they were thought to be connected with the supernatural and hence, magical. Today, we might still think of them as being magical, for the sum of each row, column and diagonal is a constant, the magic constant. The problem of construction is twofold. An algorithm which works for odd order squares will not work for even order squares without the further addition of another algorithm. Odd magic squares are fairly easily constructed using the either the Siamese (sometimes called de la Loubere's, or the Staircase method), the Lozenge, or the de Meziriac's methods.

Keywords: Magic square, de Meziriac's method, Lozenge Method, Eric's treasure, Pyramid method, de la Loubere's

Extended Pyramid method or diagonals. This method consists of three steps:

- 1. Draw a pyramid on each side of the magic square. The pyramid should have two less squares on its base than the number of squares on the side of the magic square. This creates a square standing on a vertex.
- 2. Sequentially place the numbers 1 to n^2 of the $n \ge n$ magic square in the diagonals as shown in Figures 1 and 2.
- 3. Relocate any number not in the $n \ge n$ square (that appears in the pyramids you added) to the opposite hole inside the square (shaded).

Vol.1 No.2 October 2013 ISSN: 2321 - 788X

The same Pyramid method can be used for any odd order magic square as shown below for the 5x5 square in Figure 2.

We can use some properties of magic squares to construct more squares from the manufactured squares above; *e.g.*

- 1. A magic square will remain magic if any number is added to every number of a magic square.
- 2. A magic square will remain magic if any number multiplies every number of a magic square.
- 3. A magic square will remain magic if two rows, or columns, equidistant from the centre are interchanged.
- 4. An even order magic square (*n* x *n* where *n* is even) will remain magic if the quadrants are interchanged.
- 5. An odd order magic square will remain magic if the partial quadrants and the row is interchanged.

Constructing the even order magic squares does present more of a challenge. There are many different ways, which can be studied through "Eric's treasure trove of Mathematics "; at least as a starting point.

A few magic squares have been given below. Trace out the pattern.

Shanlax International Journal of Arts, Science & Humanities

Vol.1

No.2 October 2013

ISSN: 2321 - 788X

144	2	3	141	136	10	11	133	128	18	19	125
5	139	138	8	13	131	130	16	21	123	122	24
137	7	6	140	1250	15	14	132	121	23	22	124
4	142	143	1	12	134	135	9	20	125	127	17
120	26	27	117	112	34	35	109	104	42	43	101
29	115	114	32	37	107	106	40	45	99	98	48
113	31	30	116	105	39	38	108	97	47	46	100
28	118	119	25	36	110	111	33	44	102	103	41
96	50	51	93	88	58	59	85	80	66	67	77
53	91	90	56	61	83	82	64	69	75	74	72
89	55	54	92	61	63	62	64	73	71	70	76
52	94	95	49	60	86	87	57	68	78	79	65

Magic Square 12 x 12

Magic Square 9 x 9 Total = 999

117	128	139	150	71	82	93	104	115
127	138	149	79	81	92	103	114	116
137	148	78	80	91	102	113	124	126
147	77	88	90	101	112	123	125	136
76	87	89	100	111	122	133	135	146
86	97	99	110	121	132	134	145	75
96	98	109	120	131	142	144	74	85
106	108	119	130	141	143	73	84	95
107	118	129	140	151	72	83	94	105

Magic Square 9 x 9

123	145	167	190	31	53	75	97	119
143	166	187	47	51	73	95	117	121
163	185	45	49	71	93	115	138	141
183	43	65	69	91	114	135	139	161
41	63	67	89	111	133	155	159	182
61	83	87	109	131	153	158	179	39
81	85	107	129	152	173	177	37	59
101	105	128	149	171	175	35	57	79
104	125	147	169	191	33	55	77	99

Shanlax International Journal of Arts, Science & Humanities

Vol.1

No.2 October 2013

ISSN: 2321 - 788X

64	63	3	4	5	6	58	57
1	2	62	61	60	59	7	8
56	55	11	12	13	14	50	49
9	10	54	53	52	51	15	16
48	47	19	20	21	22	42	41
17	18	46	45	44	43	23	24
40	39	27	28	29	30	34	33
25	26	38	37	36	35	31	32

Magic Square 8 x 8

Magic Square 6 x 6

8	28	33	17	10	15
30	5	34	12	14	16
4	36	29	13	18	11
35	1	6	26	19	24
3	32	7	21	23	25
31	9	2	22	27	20

Magic Square 5 x 5

24	31	8	15	22
30	12	14	21	23
11	13	20	27	29
17	19	26	28	10
18	25	32	9	16

Magic Square 4 x 4 Using Prime Number T = 180

67	1	83	29
59	53	61	7
11	47	19	103
43	79	17	41

Shanlax International Journal of Arts, Science & Humanities

Mugie oquare 1 x 1						
49	2	3	46			
5	44	43	8			
42	7	6	45			
4	47	48	1			

Magic Square 4 x 4

Magic Square 4 x 4

T = 99

	_		
49	3	4	43
9	38	37	15
35	13	11	40
6	45	47	1

Magic Square 4 x 4 T = 101

		-	
49	3	6	43
9	40	37	15
35	13	11	42
8	45	47	1

References

- 1. Andrews, William Symes. Magic squares and cubes. Cosimo, Inc., 2004.
- 2. Pickover, Clifford A. "The Zen of magic squares, circles, and stars." Princeton University (2002).
- 3. Barton, C. H., and A. Sudbery. "Magic squares and matrix models of Lie algebras." Advances in Mathematics 180.2 (2003): 596-647.
- Pinn, Klaus, and Christian Wieczerkowski. "Number of magic squares from parallel tempering Monte Carlo." International Journal of Modern Physics C 9.04 (1998): 541-546.
- 5. Abe, Gakuho. "Unsolved problems on magic squares." Discrete Mathematics 127.1-3 (1994): 3-13.